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Abstract

In this paper we propose a new combinatorial technique for obtaining data dependent
generalization bounds. We introduce a splitting and connectivity graph (SC-graph) over the
set of classifiers. In some cases the knowledge of this graph leads to an exact generalization
bound. Typically, the knowledge of a little part of the SC-graph is sufficient for reasonable
approximation of the bound. Being applied to a parametric set of conjunctive rules our
bound helps to obtain more reliable classifiers as compositions of less overfitted rules.

1 Introduction

The accurate bounding of overfitting remains one of the most challenging open problems in compu-
tational learning theory starting with VC-theory (Vapnik and Chervonenkis, 1971). Generalization
bounds are still pessimistically overestimated regardless of recent significant improvements, see sur-
veys (Vayatis and Azencott, 1999, Langford, 2002, Boucheron et al., 2005). Conservative bounds are
not always suitable for overfitting understanding, prediction, and control. Another difficulty is that
both final and intermediate bounds are usually stated for unobservable quantities. Therefore it is
not always possible to measure and compare the factors of overestimation. For classical VC bounds
such empirical measurement has been performed in (Vorontsov, 2008). The permutational proba-
bility framework has been developed to make intermediate bounds measurable. It has been shown
that overfitting depends not only on the number of different classifiers (shattering coefficient) but
in greater degree on their diversity. Splitting and connectivity properties of the set of classifiers are
two aspects of diversity that reduce overfitting and might help to obtain tighter bounds.

The splitting property means that only a small part of classifiers from a given set have a low
error rate and, as a result, a high chance to be produced by learning algorithm. Splitting happens
when we deal with a certain problem having a fixed target function.

The connectivity property means that for any classifier from a given parametric set there exist
a number of classifiers from the set differing from the first one by exactly one object. Such classifiers
are called connected. Connectivity owes to parameter continuity of a classification function.

Simple experiment with split and non-split chains of classifiers (Vorontsov, 2009) showed that the
absence of one of these advantageous properties can result in significant overfitting even though the
set contains a few dozens of classifiers. Hence, to possess both splitting and connectivity properties
is a must for sets containing billions of classifiers in practice.

In this work we develop a combinatorial theory that accurately deals with both splitting and
connectivity and gives tight or even exact bounds on probability of overfitting. Basic definitions
and notations are introduced in section 2. Section 3 revisits two classical bounds in terms of permu-
tational probabilities. In section 4 we introduce the principle of protective and prohibitive subsets
fundamental for further considerations. Section 5 contains main theorems about splitting and con-
nectivity (SC) bounds. In section 6 we show that SC-bounds can be exact for some nontrivial sets
of classifiers. In section 7 then SC-bound is applied to the set of conjunctive rules. The overfitting
reduction strategy is proposed that can be easily incorporated into existing rule induction engines.
The experiment shows that the usage of SC-bound results in better generalization on real data sets.
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program “Algebraical and combinatorial methods of cybernetics and new generation information systems”
of Russian Academy of Sciences, Branch of Mathematical Sciences.



2 Definitions and notation

Let X = {x1, . . . , xL} be a set of objects and A be a set of classifiers. By I : A × X → {0, 1}
denote a binary loss function such that I(a, x) = 1 if a classifier a produces an error on an object x.
For further considerations there is no need to specify what is “classifier”. Particularly, regression
function can also be a “classifier” if a binary loss function is used.

A binary vector (ai) ≡
(
I(a, xi)

)
L
i=1 of size L is called an error vector of the classifier a. Assume

that all classifiers from A have pairwise different error vectors. The number of errors of a classifier a
on a sample X ⊆ X is defined as n(a,X) =

∑
x∈X I(a,X). Denote n(a) = n(a,X) for short.

The error rate is defined as ν(a,X) = 1
|X|n(a,X). A learning algorithm is a mapping µ : 2X → A

that takes a training sample X ⊆ X and gives a classifier µX ∈ A.

Permutational (transductive) probability. By [X]ℓ denote a set of all
(
L
ℓ

)
= L!

ℓ!(L−ℓ)! samples

X ⊂ X of size ℓ. Assume that all partitions of the set X into an observed training sample X of size ℓ
and a hidden test sample X̄ = X \X of size k = L− ℓ can occur with equal probability.

If the discrepancy δ(a,X) = ν(a, X̄) − ν(a,X) is greater than a given nonnegative threshold ε,
then the classifier a = µX is said to be overfitted. Our goal is to estimate the probability of overfitting :

Qε(µ,X) = P
[
δ(µ,X) > ε

]
=

1(
L
ℓ

)
∑

X∈[X]ℓ

[
δ(µ,X) > ε

]
.

where δ(µ,X) = δ(µX,X) for short; the square brackets denote a transformation of a logical value
into numerical one according to Iverson’s convention: [true] = 1, [false] = 0 (Graham et al., 1994).

The inversion of an upper bound Qε 6 η(ε) is an inequality ν(µX, X̄) 6 ν(µX,X) + ε(η) that
holds with probability at least 1− η, where ε(η) is the inverse function for η(ε).

The permutational probabilistic framework seems to be restrictive because the fundamental no-
tion of “probability” degenerates into the the trivial “fraction of partitions”. Nevertheless, the
independence assumption is actually kept in this framework. This is quite sufficient to derive the
law of large numbers, rank tests, VC-bounds, and many other fundamental statistical facts.

The permutational framework has three advantages:
1) it makes redundant some usual intermediate bounds as symmetrization (Philips, 2005);
2) it allows to measure probabilities empirically in a manner of cross-validation;
3) it encourages us to keep bounds in exact, non-asymptotical form.

Learning algorithms. Empirical risk minimization (ERM) is a classical and perhaps most nat-
ural example of the learning algorithm:

µX ∈ A(X) = Argmin
a∈A

n(a,X). (1)

The choice of a classifier minimizing empirical risk may be ambiguous because of the discreteness
of the function n(a,X). ERM algorithm µ is said to be pessimistic or optimistic if, respectively,

µX = arg max
a∈A(X)

n(a, X̄); µX = arg min
a∈A(X)

n(a, X̄).

The probability Q̃ε of a large uniform deviation is considered as a main functional to be bounded
in Vapnik-Chervonenkis and Rademacher Complexity theories of generalization:

Qε(µ,X) 6 Q̃ε(A,X) ≡ P

[
max
a∈A

δ(a,X) > ε
]
. (2)

The uniform functional Q̃ε can give highly overestimated upper bounds on Qε. Nevertheless,
it is widely used because its bounds hold for any learning algorithm µ. Minimizing the inversion
of a bound leads to a new learning algorithm that tends to reduce overfitting, by construction. This
is a standard way to get practical outcome from generalization bounds. A number of complexity
penalization methods has been obtained in this way (Vapnik, 1998, Langford, 2002).

The uniform functional Q̃ε can also be represented as a probability of overfitting for a special
learning algorithm called discrepancy maximization:

µX = argmax
a∈A

δ(a,X).

The pessimistic ERM, optimistic ERM, and discrepancy maximization cannot be implemented
in practice because they look into a hidden part of data X̄ unknown at the learning stage. Never-
theless, they are very useful for theoretical considerations because of the following relationships.

Lemma 1 For any set X and any ERM learning algorithm µ

Qε(OptERM,X) 6 Qε(µ,X) 6 Qε(PessERM,X) 6 Qε(DiscrMax,X) = Q̃ε(A,X).
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3 Fixed classifier bound and Vapnik-Chervonenkis bound

In this section we show that permutational probabilistic framework gives an exact bound for a fixed
classifier (FC) and an upper Vapnik-Chervonenkis (VC) bound by a quite straightforward way.

Hypergeometric distribution. For a classifier a such that m = n(a,X) the probability to have
s errors on a sample X is given by a hypergeometric function:

P
[
n(a,X) = s

]
= P

[
n(a, X̄) = m− s

]
= hℓ, m

L (s) ,

where hℓ, m
L (s) =

(
m
s

)(
L−m
ℓ−s

)
/
(
L
ℓ

)
, argument s runs from s0 = max{0,m− k} to s1 = min{m, ℓ},

parameter m takes values 0, . . . , L. It is assumed that
(
m
s

)
= hℓ, m

L (s) = 0 for all other integers m, s.
Define the cumulative distribution function (left tail) of the hypergeometric distribution

Hℓ, m
L (z) =

⌊z⌋∑

s=s0

hℓ, m
L (s) .

Consider a set A = {a} containing only a fixed classifier, so that µX = a for any X. Then the
probability of overfitting Qε transforms into the probability of large deviation between error rates on
two samples X, X̄. If the number of errors n(a) is known, then an exact Qε bound can be obtained.

Theorem 2 (FC-bound) For any set X, any ε ∈ [0, 1], and a fixed classifier a such that m = n(a)
the probability of overfitting is given by the left tail of the hypergeometric distribution:

Qε(a,X) = Hℓ, m
L

(
ℓ
L
(m− εk)

)
. (3)

Proof: Denote s = n(a,X) and rewrite the overfitting condition δ(a,X) > ε as 1
k
(m− s)− 1

ℓ
s > ε

or equivalently s 6 ℓ
L
(m− εk) ≡ sm(ε). Then

Qε = P
[
n(a,X)6sm(ε)

]
=

⌊sm(ε)⌋∑

s=s0

P
[
n(a,X)=s

]
=

⌊sm(ε)⌋∑

s=s0

hℓ, m
L (s) = Hℓ, m

L (sm(ε)) .

The hypergeometric distribution plays a fundamental role in all further combinatorial bounds.

Theorem 3 (VC-bound) For any set X, any learning algorithm µ, and any ε ∈ [0, 1] the proba-
bility of large uniform deviation is bounded by the sum of FC-bounds over the set A:

Q̃ε(A,X) 6
∑

a∈A

Hℓ, m
L

(
ℓ
L
(m− εk)

)
, m = n(a). (4)

Proof: Apply a union bound substituting the maximum of binary values by their sum:

Q̃ε = Pmax
a∈A

[
δ(a,X)>ε

]
6

∑

a∈A

P
[
δ(a,X)>ε

]
=

∑

a∈A

Hℓ, m
L (sm(ε)) , m = n(a).

The union bound is the only reason of the looseness of the VC-bound (4).
Note that further weakening gives a well known form of the VC-bound (Vapnik, 1998):

Q̃ε(A,X) 6 |A|max
m

Hℓ, m
L (sm(ε)) 6 |A| · 3

2e
−ε2ℓ, if ℓ = k,

where |A| is called a shattering coefficient of the set of classifiers A on the set X.

It is well known that VC-bound is highly overestimated which can be explained by the fact that all
classifiers make approximately equal contributions to the VC-bound. However, the set of classifiers
is usually split into error rates in quite nonuniform manner. Most classifiers are bad, therefore, have
vanishing probability to be obtained as a result of learning and make a negligible contribution to the
probability of overfitting. On the other hand, similar classifiers share their contribution, thus each of
them contributes poorly again. VC bound totally ignores these advantageous effects. The uniform
deviation bound sacrifices the splitting effect; the union bound sacrifices the similarity effect.

Note that the initial proof by Vapnik and Chervonenkis was purely combinatorial. Later a com-
binatorial approach was neglected in favor of more sophisticated techniques from functional analysis
and concentration of measure (Lugosi, 2003, Boucheron et al., 2000). We wish revisit this point and
demonstrate that the combinatorial approach has not exhausted its potential.
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4 The principle of protective and prohibitive subsets

The principle of protective and prohibitive sets (Vorontsov, 2010) is based on the conjecture that
the necessary and sufficient condition for µX = a can be specified explicitly for any classifier a ∈ A
in terms of subsets of objects. From this conjecture an exact Qε bound has been derived.

In this work we use a similar conjecture relaxed to the necessary condition and derive an upper
bound which has a simpler form.

Conjecture 4 For each classifier a ∈ A there exists a protective subset Xa ∈ X and a prohibitive
subset X ′

a ∈ X such that for any X ∈ [X]ℓ

[
µX=a

]
6

[
Xa⊆X

][
X ′

a⊆X̄
]
. (5)

The subset X\Xa\X
′
a is called neutral for a classifier a. The presence or absence of neutral

objects in a training sample X does not change the result of learning µX. Later we will give
nontrivial examples of µ and A that satisfy conjecture 4.

Lemma 5 If conjecture 4 holds, then the probability to learn a classifier a can be bounded:

P
[
µX=a

]
6 Pa ≡

(
La

ℓa

)
/
(
L
ℓ

)
,

where La = L− |Xa| − |X ′
a| and ℓa = ℓ− |Xa| are the number of neutral objects for a classifier a in

the general set X and sample X respectively.

Proof: According to the conjecture P
[
µX=a

]
6 P

[
Xa ⊆ X

][
X ′

a ⊆ X̄
]
. The right-hand side is a

fraction of partitions X = X ⊔ X̄ such that Xa ⊆ X and X ′
a ⊆ X̄. The number of such partitions is

equal to
(
La

ℓa

)
. The number of all partitions is equal to

(
L
ℓ

)
, hence their ratio gives Pa.

Theorem 6 If conjecture 4 holds, then for any ε ∈ [0, 1] the bound on probability of overfitting is

Qε 6
∑

a∈A

PaH
ℓa, ma

La
(sa(ε)) , (6)

where ma = n(a,X\Xa\X
′
a) is a number of errors that classifier a produces on neutral objects and

sa(ε) =
ℓ
L

(
n(a)− εk

)
− n(a,Xa) is a largest number of errors n(a,X\Xa) that classifier a produces

on neutral training objects provided that discrepancy δ(a,X) exceeds ε.

Proof: The probability of overfitting Qε can be found as a total probability from probability to learn
each of classifiers P

[
µX=a

]
and conditional probabilities Qε|a = P

[
δ(a,X)>ε | a=µX

]
:

Qε =
∑

a∈A

P
[
µX=a

]
Qε|a 6

∑

a∈A

PaQε|a.

The conditional probability Qε|a can be obtained from theorem 3 by taking into account that the
subsets Xa and X ′

a can not be involved in partitioning given a fixed classifier a. Only La neutral
objects are partitioned into ℓa training and La− ℓa testing objects. To employ theorem 3 we express
the discrepancy δ(a,X) in terms or the number of errors on neutral training objects s = n(a,X\Xa):

δ(a,X) = 1
k

(
n(a)− s− n(a,Xa)

)
− 1

ℓ

(
s+ n(a,Xa)

)
.

Condition δ(a,X) > ε is equivalent to s 6 sa(ε). Then Qε|a = Hℓa, ma

La
(sa(ε)) and (6) holds.

Note that the sum
∑

a Pa can be interpreted as a degree of looseness of the bound (6). The bound
is exact if this sum is equal to 1.

The principle of protective and prohibitive subsets is a powerful tool to obtain combinatorial
generalization bounds. In (Vorontsov, 2010) it has been used to obtain exact bounds on proba-
bility of overfitting for model sets of classifiers like monotonic and unimodal chains. This work is
focused on common bounds for arbitrary sets of classifiers that take into account both splitting and
connectivity properties of the set.

4



(a) (b)

m

(c)

layer 0 layer 1 layer 2
x1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 . . .
x2 0 0 1 0 0 0 1 1 0 0 0 0 0 0 . . .
x3 0 0 0 1 0 0 0 1 1 0 0 0 0 1 . . .
x4 0 0 0 0 1 0 0 0 1 1 0 0 0 0 . . .
x5 0 0 0 0 0 1 0 0 0 1 1 1 0 0 . . .
x6 0 0 0 0 0 0 0 0 0 0 1 0 1 0 . . .
x7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . . .
x8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
x9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
x10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

Figure 1: Two-dimensional linearly separable classification task with L = 10 objects of 2 classes and
5 linear classifiers that produce exactly one error (a). The SC-graph over the set of all 2-dimensional
linear classifiers (b). The first layer (m = 1) corresponds to 5 classifiers shown at the left chart.
The fragment of error matrix corresponding to layers m = 0, 1, 2 (c).

5 Splitting and connectivity bounds

The splitting and connectivity graph. Define an order relation on classifiers a 6 b as a natural
order over their error vectors: ai 6 bi for all i = 1, . . . , L. Define a metric on classifiers as a Hamming

distance between error vectors: ρ(a, b) =
∑L

i=1 |ai − bi|. Classifiers a and b are called connected if

ρ(a, b) = 1. Define the precedence relation on classifiers a ≺ b as
(
a 6 b

)
∧
(
ρ(a, b) = 1

)
.

The set of classifiers A can be represented by a multipartite directed graph 〈A,E〉 that we call the
splitting and connectivity graph (SC-graph) in which vertices are classifiers, and edges (a, b) are pairs
of classifiers such that a ≺ b, see example on Figure 1. The partite subsets Am = {a ∈ A : n(a) = m}
are called error layers, m = 0, . . . , L. Each edge of the SC-graph (a, b) corresponds to an object
xab ∈ X such that I(a, xab) = 0 and I(b, xab) = 1.

SC-graph is much the same as 1-inclusion graph used in (Haussler et al., 1994) to obtain lower
bounds on VC-dimension. The VC-dimension may result in highly overestimated generalization
bounds as it is based on the union bound. In our combinatorial framework the SC-graph is used
to replace the union bound by a much more accurate technique.

Note that SC-graph can be considered also as a subgraph of the Hasse diagram (the graph of
transitive reduction) of the partial order over error vectors.

SC-bound for pessimistic Empirical Risk Minimization.

Lemma 7 If learning algorithm µ is pessimistic ERM, then conjecture 4 holds, and for any a ∈ A

Xa =
{
xab ∈ X

∣∣ a ≺ b
}

is the protective subset;

X ′
a =

{
x ∈ X

∣∣ ∃b ∈ A : b 6 a, I(b, x) < I(a, x)
}

is the prohibitive subset.

Proof: Let us use a proof by contradiction showing that if µX = a, then Xa ⊆ X and X ′
a ⊆ X̄.

Assume that an object xab ∈ Xa not belonging to X exists. Then n(a,X) = n(b,X) because
the error vectors a and b differ by exactly one object xab. At the same time n(a,X) + 1 = n(b,X),
therefore the learning algorithm µ being pessimistic learns the classifier b rather than a from the
training sample X which contradicts the initial condition µX = a. Then we conclude that Xa ⊆ X.

Assume that an object x ∈ X ′
a belonging to X exists. Then n(b,X) < n(a,X). The learning

algorithm µ being empirical risk minimizer learns the classifier b rather than a from the training
sample X which contradicts the initial condition µX = a. Then we conclude that X ′

a ⊆ X̄.

Corollary 8 Any classifier a ∈ A produces errors on all prohibitive objectsX ′
a and does not produce

errors on all protective objects Xa.
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Upper connectivity q(a) = |Xa| of a classifier a is the out-degree of the vertex a in the SC-graph,
i. e. the number of edges leaving the vertex a.

Lower connectivity d(a) = |X ′
a| of a classifier a is the in-degree of the vertex a in the SC-graph,

i. e. the number of edges entering the vertex a.

Inferiority r(a) = |X ′
a| of a classifier a is the number of different objects assigned to edges below

the vertex a in the SC-graph. If a correct classifier a0 ∈ A exists such that n(a0) = 0, then inferiority
is equal to the number of errors, r(a) = n(a). In general case, d(a) 6 r(a) 6 n(a).

Theorem 9 (SC-bound) If learning algorithm µ is ERM, then for any ε ∈ [0, 1] the probability
of overfitting is bounded by the weighted sum of FC-bounds over the set A:

Qε(µ,X) 6
∑

a∈A

(
L−q−r
ℓ−q

)
(
L
ℓ

) Hℓ−q, m−r
L−q−r

(
ℓ
L
(m− εk)

)
, (7)

where q = q(a) is upper connectivity, r = r(a) is inferiority, m = n(a) is the number of errors of
classifier a on the general object set X.

Proof: The bound (7) for pessimistic ERM follows immediately from theorem 6, lemma 7, and
corollary 8. From lemma 1 it follows that (7) also holds for any ERM.

The weight Pa =
(
L−q−r
ℓ−q

)
/
(
L
ℓ

)
in the sum (7) is an upper bound on the probability to learn the

classifier a. Its value decreases exponentially as connectivity q(a) and inferiority r(a) increase. This
fact has two important consequences.

First, connected sets of classifiers are less subjected to overfitting. Note that an attempt to use
only the fact of connectedness with no counting the number of connections did not lead to a tight
bound (Sill, 1998).

Second, only a little part of lower layers contribute significantly to the probability of overfitting.
This fact encourages effective procedures for level-wise bottom-up SC-bound computation.

The SC-bound (7) is much more tight than the VC-bound (4). It can be transformed into the
VC-bound by substituting q = r = 0, i. e. by totally disregarding the SC-graph structure.

SC-bound for Discrepancy Maximization.

Lemma 10 If µ is discrepancy maximization, then conjecture 4 holds, and for any a ∈ A

Xa =
{
xab ∈ X

∣∣ a ≺ b
}

is the protective subset;

X ′
a =

{
xba ∈ X

∣∣ b ≺ a
}

is the prohibitive subset.

Proof: From µX = a it follows that

δ(a,X) > δ(b,X) for any b ∈ A. (8)

Consider an arbitrary xab ∈ Xa. Then I(a, xab) = 0, I(b, xab) = 1. If we assume that xab ∈ X̄,
then δ(b,X) = ν(b, X̄)−ν(b,X) = ν(a, X̄)+ 1

k
−ν(a,X) > δ(a,X) which contradicts (8). Therefore,

our assumption is false and xab ∈ X. Since xab is arbitrary element of Xa, we have Xa ⊆ X.
Consider an arbitrary xba ∈ X ′

a. Then I(b, xba) = 0, I(a, xba) = 1. If we assume that xba ∈ X,
then δ(b,X) = ν(b, X̄)− ν(b,X) = ν(a, X̄)− ν(a,X)+ 1

ℓ
> δ(a,X) which contradicts (8). Therefore

our assumption is false and xba ∈ X̄. Since xba is arbitrary element of X ′
a, we have X ′

a ⊆ X̄.

Lemma 10 for discrepancy maximization is similar to lemma 7 for pessimistic ERM. The difference
in prohibitive subsets leads to the bound similar to (7), in which inferiority r(a) changes to lower
connectivity d(a). We call this bound the uniform connectivity (UC) bound for two reasons. First,

it also holds for the probability of large uniform deviation Q̃ε(A,X). Second, it does not use the
splitting property of the set A any more.

Theorem 11 (UC-bound) If µ is discrepancy maximization, then for any ε ∈ [0, 1] the probability
of overfitting is bounded by the weighted sum of FC-bounds over the set A:

Qε(µ,X) = Q̃ε(A,X) 6
∑

a∈A

(
L−q−d
ℓ−q

)
(
L
ℓ

) Hℓ−q, m−d
L−q−d

(
ℓ
L
(m− εk)

)
, (9)

where q = q(a) is upper connectivity, d = d(a) is lower connectivity, m = n(a) is the number of
errors of classifier a on the general object set X.
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m - 1

m

m + 1

 a

x1 x2

x3 x2 x1 x4

x5 x2 x3 x4 x1 x6

x7 x2 x5 x4 x3 x6 x1 x8

Figure 2: The SC-graph over 2-dimensional monotonic lattice of altitude 4. Algorithm a at m-th
layer has prohibitive subset {x1, x2} and protective subset {x3, x4}.

Proof: follows immediately from theorem 6 and lemma 10.

The UC-bound (9) can be much greater (less tight) than the SC-bound (7). The weight
(
L−q−d
ℓ−q

)
/
(
L
ℓ

)

decreases exponentially as connectivity q(a) or d(a) increases. However it does not decrease as r(a)
or n(a) increases. This means that the UC-bound ignores the splitting effect.

6 Exact SC-bounds for model sets of classifiers

The set of classifiers A is called a model set if it is defined directly as a set of binary error vectors.
Typically, a tight or even exact combinatorial bound on probability of overfitting can be obtained
for a model set due to its special “regular” structure. Model sets provide a theoretical understand-
ing of overfitting demonstrating how overfitting may depend on splitting, connectivity, and other
properties of the set of classifiers. Exact bounds have been obtained for monotonic and unimodal
chain, unity neighborhood of a fixed classifier, pair of classifiers, interval of L-dimensional boolean
cube (Vorontsov, 2010), Hamming balls, pencils of monotonic chains, and some other constructions.

Monotonic chain of classifiers can be considered as a model of one-parametric family of clas-
sifiers such that continuous moving a parameter away from its optimal value can only increase the
number of errors produced by a classifier on the general sample X. A monotonic chain is defined as
a set A = {a0, a1, . . . , aH} such that a0 ≺ a1 ≺ · · · ≺ aH . This is a simplest set of classifiers with
splitting and connectivity. An exact bound on probability of overfitting for pessimistic ERM has
been obtained in (Vorontsov, 2010) from the principle of protective and prohibitive subsets:

Qε(µ,X) =

min{H,k}∑

t=0

Cℓ−q
L−q−t

Cℓ
L

Hℓ−q, m
L−q−t

(
ℓ
L
(m+ t− εk)

)
, q = [t<H].

This bound can also be obtained immediately from the common SC-bound and observation that the
SC-graph is a chain, q(at) = [t<H], and r(at) = t for all t = 0, . . . , H.

Multidimensional monotonic lattice of classifiers is a natural multidimensional extension
of the monotonic chain. Beside splitting and connectivity it also possesses a dimension. Together
these three properties are intrinsic for most real sets of classifiers. An exact bound for this set has
been obtained in (Botov, 2011) from the modified layer-wise principle of protective and prohibitive
subsets. Here we show that it can be easily obtained from our common SC-bound.

Index vector is a vector of nonnegative integer values J = (j1, . . . , jh). Denote |J | = j1+ · · ·+ jh.
Define a partial order relation on index vectors: (J 6 K) ↔ (jd 6 kd for all d = 1, . . . , h). Define
(J < K) ↔ (J 6 K and J 6= K).

Definition 12 An h-dimensional monotonic lattice of classifiers of altitude H is a set of classi-
fiers aJ =

{
aJ : |J | 6 H

}
indexed by h-dimensional index vectors J = (j1, . . . , jh) such that

1) for any index vectors J,K if J < K, |J | 6 H, |K| 6 H, then aJ 6 aK ;
2) n(aJ ) = m+ |J | for some m.

Figure 2 shows an example of 2-dimensional lattice of altitude 4. Like monotonic chain, SC-bound
for this model set is exact and easily follows from the common SC-bound.
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Lemma 13 There are only three types of objects in the set X:
1) m objects on which any classifier gives an error;
2) Hh objects

{
xd
t : t = 0, . . . , H−1, d = 1, . . . , h

}
such that I(aJ , x

d
t ) =

[
t < jd

]
for any |J | 6 H;

3) other objects on which no classifier gives an error.

The proof is not difficult but needs a number of details, therefore we omit it for reasons of space.

Lemma 14 If µ is pessimistic ERM, then
[
µX=aJ

]
=

[
XJ ⊆ X

][
X ′

J ⊆ X̄
]
for all aJ ∈ A, where

XJ =
{
xd
t : t = jd, d = 1, . . . , h

}
is the protective subset;

X ′
J =

{
xd
t : t < jd, d = 1, . . . , h

}
is the prohibitive subset.

Proof: Let us prove that if XJ ⊆ X and X ′
J ⊆ X̄, then only the classifier aJ can be an output of

the learning algorithm: µX = aJ .
The classifier aJ makes errors only on objects from X ′

J all belonging to X̄; then n(aJ , X) = 0.
Consider a classifier aK such that K 66 J . This means that kd > jd for some coordinate d. Then

the classifier aK produces an error on the object xd
jd

that belongs to XJ and hence to the training
sample X. Therefore, the learning algorithm µ being empirical risk minimizer will not choose aK .

Consider a classifier aK such that K < J . Then both aJ and aK do not make errors on
the training sample X. Assume that kd < jd for some coordinate d. Then only aJ makes an error
on a testing object xd

kd
. Therefore learning algorithm µ being pessimistic will not choose aK .

Thus, only the classifier aJ can be an output of the learning algorithm.

Theorem 15 If the learning algorithm µ is pessimistic ERM, the set A is a monotonic h-dimensional
lattice of classifiers with altitude H and m+Hh 6 L, then

Qε(µ,X) =

min{H,k}∑

t=0

(
h+t−1

t

)
(
L−q−t
ℓ−q

)
(
L
ℓ

) Hℓ−q, m
L−q−t

(
ℓ
L
(m+ t− εk)

)
, q = [t<H]h.

Proof: Let us numerate nonempty layers of the monotonic lattice by t = 0, . . . , H. Note that
n(aJ ) = m+ t and t = |J | for any classifier aJ ∈ A.

It follows from lemma 13 that r(aJ ) = t and q(aJ ) = h for all aJ ∈ A except for classifiers from
the last (highest) layer which do not have protective objects: q(aJ ) = 0, |J | = H.

All classifiers aJ from one layer t = |J | have equal characteristics q, r, and n. Therefore, the
sum over classifiers in (7) can be transformed into the sum over layers t = 0, . . . , H, with multiplier

|Am+t| =
(
h+t−1

t

)
under the sum.

By lemma 14 the inequality (5) transforms into the equality and gives a necessary and sufficient
condition for µX = a. Then, the SC-bound (7) also transforms into the equality.

In a particular case, when h = 1, the bound for monotonic lattice transforms into the bound
for monotonic chain. Both theoretical and experimental analysis of monotonic lattices can be found
in (Botov, 2011). The purpose of this section is to show that exact bounds can be obtained from
the common SC-bound for nontrivial sets of classifiers.

7 Tight SC-bound for threshold conjunctive rule

Rule induction is a well known, deeply studied, and widely used paradigm in machine learning
(Rivest, 1987, Cohen and Singer, 1999, Marchand and Sokolova, 2005, Fürnkranz and Flach, 2005,
Rückert and Raedt, 2008).

Conjunctive rules. Consider a classification problem with labels yi ∈ Y, i = 1, . . . , L assigned to
each object xi ∈ X respectively. Consider a parametric set R of conjunctive rules

r(x; θ) =
∏

j∈J

[
xj

6 θj
]
, (10)

where x = (x1, . . . , xn) is a vector of numerical features of an object x, J ⊆ {1, . . . , n} is a subset of
features, θj ∈ R is a threshold parameter for j-th feature. Note that (10) can be easily generalized

to rules with conditions θj1 6 xj 6 θj2 or xj > θj simply by adding a negated feature −xj .
An object x is said to be covered by the rule r if r(x) = 1.
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Rule learning. The rule induction system usually learns a rule set Ry for each class y ∈ Y from
a training set X. Two criteria are optimized simultaneously to select useful rules — the number of
positive and negative examples covered by r, respectively:

p(r,X) = #
{
xi ∈ X

∣∣ r(xi) = 1, yi = y
}
→ max;

n(r,X) = #
{
xi ∈ X

∣∣ r(xi) = 1, yi 6= y
}
→ min .

In practice the two-criteria optimization task is reduced to one-criterion task by means of heuristic
function H(p, n). Examples of H are entropy, Gini index, Fisher’s exact test, χ2- and ω2-tests, and
many others (Fürnkranz and Flach, 2005).

Rule based classifier. After learning the rule sets Ry for all y ∈ Y the classifier can be build up
as a composition of rules. The weighted voting is a most popular choice:

a(x) = argmax
y∈Y

∑

r∈Ry

wrr(x),

where weights wr > 0 are to be learned from the training set X. So, there are three things to learn:
1) thresholds θj , j ∈ J for each subset J ;
2) feature subset J for each rule r;
3) weight wr for each rule r.
Respectively, there are three reasons for overfitting. In this work we deal with overfitting resulting

from thresholds learning and use the SC-bound to build a new criterion for feature subsets selection.
So, our goal is to reduce overfitting for learning stages 1) and 2), with motivation that a good
classifier can be hardly build up from overfitted rules. We leave the stage 3) beyond the scope of
this paper bearing in mind that the overfitting of weighted voting is now well understood (Schapire
et al., 1998, Koltchinskii et al., 2001).

The main idea of heuristic modification is to obtain the SC-bound on both p and n for
a fixed J ; then to get inverted estimates that hold with probability at least 1− η:

1
k
p(r, X̄) > 1

ℓ
p(r,X)− εp(η),

1
k
n(r, X̄) 6 1

ℓ
n(r,X) + εn(η),

and substitute these estimates instead of p, n in a heuristic function:

H ′(p, n) = H
(
p− ℓεp(η), n+ ℓεn(η)

)
.

The modified heuristic H ′ estimates the quality of a rule with a fixed subset of features J
and learnt thresholds. Both discrepancies εp(η) and εn(η) are very sensitive to the number of
rules in bottom levels of the SC-graph. The more rules the bottom levels contain, the higher is
overfitting. The modified heuristic H ′ can be considered as a feature selection criterion based on
a data-dependent generalization bound.

In order to specialize the SC-bound for conjunctive rules we first define the binary loss function:
I(r, xi) =

[
r(xi) 6= [yi=y]

]
, i = 1, . . . , L, for any rule r of class y. Second, we will describe how to

iterate in (7) only rules having pairwise different error vectors. As a result we will obtain a heuristic
function H modified by the SC-bound which can be easily incorporated into any rule inducer.

Classes of equivalent rules. Fig. 3(a) shows an example of two-dimensional objects set X com-
bining the scatter plot of initial objects with the set R of rules r(x; θ) = [x1 6 θ1] [x2 6 θ2]. Each
object and each rule is represented by a node of (L+ 1)× (L+ 1) grid in coordinate plane θ1, θ2.
Nodes containing the rules with equal error vectors are connected. Fig. 3(b) shows the same objects
set, but only representative rules (with pairwise different error vectors) are left on the plot. Rules
with Hamming distance 1 are connected. Fig. 3(c) shows the SC-graph of the rule set isomorphic to
the graph on Fig. 3(b).

From the above example it seems that the equivalence classes of rules have a nontrivial structure.
In fact, this is not the case and equivalence classes can be efficiently described and searched.

For the sake of simplicity consider a case when all values xj
i , i = 1, . . . , L are pairwise different

for each feature j = 1, . . . , n. Without loss of generality, assume that the features take integer values
1, . . . , L and the thresholds take integer values 0, . . . , L.

The loss function I induces an equivalence relation on the set of rules R. Two rules are equivalent,
r ∼ r′ if their error vectors are equal. Let u = (uj)j∈J , v = (vj)j∈J be a pair of vectors. Define
a partial order relation (u 6 v) ↔ ∀j ∈ J (uj 6 vj) Define (u < v) ↔ (u 6 v and u 6= v).

By θjr denote a value of threshold on j-th feature for a rule r(x; θ) , θ = (θjr)j∈J
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Figure 3: Example of a set of L = 10 objects of two classes (a), the graph of representative rules (b),
and the SC-graph (c).

Lemma 16 If E ⊆ R is equivalence class of rules, then a rule r(x; θE) belongs to the equivalence

class E, where θjE = min
r∈E

θjr.

Proof: All equivalent rules r ∈ E have equal binary error vectors. Then a binary function

rE(x) =
∏

r∈E

r(x; θr)

takes the same value on each object x ∈ X as any rule r from E, rE(x) = r(x; θr). Moreover, the
binary function rE can be represented in the form (10), so it is also a rule:

rE(x) =
∏

r∈E

∏

j∈J

[
xj

6 θjr
]
=

∏

j∈J

[
xj

6 min
r∈E

θjr
]
=

∏

j∈J

[
xj

6 θjE
]
= r(x; θE).

This means that the rule r(x; θE) pertains to the equivalence class E.

The rule rE(x) ≡ r(x; θE) from the previous lemma will be called a representative rule of the
equivalence class E. On figure 3 representative rules correspond to lower left corners of equivalence
classes: (0, 0), (1, 8), (2, 5), (5, 1), etc.

A boundary point of the subset S ⊆ X is a vector θS with coordinates θjS = max
x∈S

xj , j ∈ J .

A boundary object of the subset S ⊆ X is any object x ∈ S such that xj = θjS for some j.
A boundary subset is a subset S ⊆ X such that all objects x ∈ S are boundary objects of S.

Empty set is assumed to be a boundary subset with boundary point θj
∅
= 0, j ∈ J .

Note that r(x, θS) = 1 for any x ∈ S.
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Lemma 17 If a threshold vector θ is a boundary point of some boundary subset, then this subset
can be unambiguously determined by the threshold vector θ:

Sθ =
⋃

j∈J

{
x ∈ X

∣∣ xj = θj , r(x, θ) = 1
}
. (11)

Proof: If θ = θ∅, then Sθ = ∅ by definition. Otherwise, threshold vector θ is a boundary point,
and for any index j ∈ J an object x ∈ X exists such that xj = θj and x̄ 6 θ̄ for all other indices
̄ ∈ J \ {j}. Then r(x, θ) = 1, and it follows from (11) that x ∈ Sθ. The index j ∈ J was chosen
arbitrarily. Therefore, the threshold vector θ is a boundary point of the subset Sθ. The subset Sθ

is a boundary because each of its objects is a boundary according to (11).

Theorem 18 Each equivalence class E bijectively corresponds to a boundary subset S: θE = θS .

Proof: Consider an arbitrary equivalence class E with representative rule r(x; θE). By lemma 16 the

decrease of threshold θjE along any coordinate j ∈ J changes the value r(x; θE) on some object x ∈ X

such that x 6 θE . This value may only be decreased: [xj 6 θjE ] = 1, [xj 6 θjE − 1] = 0. From this

it follows that xj = θjE , then x is a boundary object in the subset
{
x′ ∈ X : x′ 6 θE

}
. As feature j

is arbitrary, this means that threshold vector θE is a boundary point. According to lemma 17 it
determines a unique boundary subset.

The converse is also true. Any boundary subset S has a boundary point θS . The rule r(x; θS) is
a representative rule of the equivalence class E it belongs to, because the decrease of the threshold
θjS along any coordinate j ∈ J changes the value r(x; θS) on some boundary object of the subset S.

Thus we conclude that each equivalence class E bijectively corresponds to a boundary subset S
such that θE = θS .

Denote Mq the set of all boundary subsets of size q and recapitulate its properties:

1) M1 consists of all L one-element subsets, M1 =
{
{x1}, . . . , {xL}

}
;

2) M2 consists of all pairs of incomparable objects from X;
3) the size of boundary subset can not exceed the rank of conjunction: Mq = ∅ for all q > |J |;
4) any boundary subset consists of pairwise incomparable objects; the converse is not obligatory

true: a subset of three or more pairwise incomparable objects may not be a boundary subset;
5) any subset S′ ⊂ S of the boundary subset S is a boundary subset too.

A simple algorithm which iterates all boundary subsets follows from these properties. At the first
step a subset M1 is formed from all L one-object subsets. At each subsequent step q = 2, . . . , |J | for
all subsets S′ ∈ Mq−1 and for all objects x ∈ X \ S′ if the subset S = S′ ∪ {x} is boundary (which
can be easily tested by definition), then S joins Mq.

More efficient but more complicated level-wise algorithm for SC-bound calculation is described
in (Vorontsov and Ivahnenko, 2011). It iterates rules from bottom to upper levels and uses early
stopping to bypass rules that do not make significant contribution to the SC-bound. Additionally
this algorithm calculates the connectivity and the inferiority of each rule.

Experiment. We use state-of-the art algorithms C4.5 (Quinlan, 1996), C5.0 (Quinlan, 1993),
RIPPER (Cohen, 1995), and SLIPPER (Cohen and Singer, 1999) as baseline rule learners. Our rule
learning engine is based on breadth-first search as features selection strategy. Fisher’s exact test (Mar-
tin, 1997) is used as heuristic H. To build compositions of rules we use three algorithms. Logistic
Regression (LR) is a linear classifier that aggregates rules learned independently. Weighted Vot-
ing (WV) is a boosting-like ensemble of rules, similar to SLIPPER, which trains each next rule
on reweighted training set. Decision List (DL) is a greedy algorithm, which trains each next rule
on training objects not covered by all previous rules.

There are two modifications of heuristic H ′(p, n). The SC-modification uses SC-bound on the
probability of overfitting Qε as described above. The MC-modification uses the Monte-Carlo esti-
mation of Qε via 100 random partitions X = X ⊔ X̄. For both modifications we set ℓ = k.

Table 1 shows that initially our algorithms WV, DL are comparable to the baseline. WV out-
performs DL, which corresponds to the results of other authors. Both SC- and MC- modifications
reduce overfitting significantly and always outperform their respective initial versions. The difference
between SC- and MC- modifications is not significant. Then, a moderate looseness of the SC-bound
does not reduce its practical usefulness as a rule selection criterion.
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Table 1: Experimental results on 6 real data sets from UCI Machine Learning Repository. For
each pair 〈task, algorithm〉 an average testing error obtained from 10-fold cross validation is given,
in percents. For each task three best results are bold-emphasized. Algorithms 1–7 are baseline rule
learners. Our algorithms: WV — Weighted Voting, DL — Decision List, SC — using heuristic
modified by SC-bound, MC — using heuristic modified by Monte-Carlo estimation of overfitting.

tasks
algorithms

australian echo-card heart dis. hepatitis labor liver
1 RIPPER−opt 15.5 2.9 19.7 20.7 18.0 32.7
2 RIPPER+opt 15.2 5.5 20.1 23.2 18.0 31.3
3 C4.5 (Tree) 14.2 5.5 20.8 18.8 14.7 37.7
4 C4.5 (Rules) 15.5 6.8 20.0 18.8 14.7 37.5
5 C5.0 14.0 4.3 21.8 20.1 18.4 31.9
6 SLIPPER 15.7 4.3 19.4 17.4 12.3 32.2
7 LR 14.8 4.3 19.9 18.8 14.2 32.0

8 WV 14.9 4.3 20.1 19.0 14.0 32.3
9 DL 15.1 4.5 20.5 19.5 14.7 35.8

10 WV+MC 13.9 3.0 19.5 18.3 13.2 30.7
11 DL+MC 14.5 3.5 19.8 18.7 13.8 32.8

12 WV+SC 14.1 3.2 19.3 18.1 13.4 30.2
13 DL+SC 14.4 3.6 19.5 18.6 13.6 32.3

8 Conclusion

Splitting and connectivity (SC) are very important data-dependent properties of a set of classi-
fiers that determines its generalization ability. This work gives a combinatorial SC-bound on the
probability of overfitting. The SC-bound takes into account both the learning algorithm and a fine
internal structure of the set of classifiers represented by the SC-graph. The SC-bound can be exact
(non-asymptotical, non-overestimated) for some nontrivial sets of classifiers like the monotonic chain
and the multidimensional monotonic lattice.

If the discrepancy maximization is considered as a learning algorithm, then the SC-bound trans-
forms into the UC (uniform connectivity) bound and gives the probability of a large uniform devi-
ation. Thus, the UC-bound can be used for the Rademacher complexity estimation. Note that the
UC-bound takes into account the connectivity but neglect the splitting.

The SC-bound being applied to threshold conjunctive rules helps to select features for each rule
more accurately, and then to reduce overfitting of a rule induction machine. In practice this can be
implemented as a slight modification of a heuristic function which estimates the usefulness of a rule.
Experiments on six real data sets show that the proposed modification reduces overfitting.
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