Aggregation of data from different sources in traffic flow tasks

V. M. Starozhilets, U. V. Chehovich

Dorodnicyn Computing Centre FRC CSC RAS, Moscow, Russia

Barcelona 2016

Motivation

Motivation

Traffic flow mathematical models require accurate data for its initialisation and solving.

Problems with traffic data:

- Traffic detectors data are accurate, but do not cover all considered parts of transport network
- GPS-track data has low accuracy, but covers all considered parts of transport network
Considered environments:
- highway itself
- highway entrances and exits

Example of initialisation

Det. \#2, lane 5

Figure: Fundamental diagram for Moscow Ring Road segment

Main assumption

Let $N_{\text {track }, i} \in \mathbb{N}, V_{\text {track, } i} \in \mathbb{R}_{+}$be a number and speed of vehicles extracted from GPS-tracks at moment i.
Denote by $N_{\text {est }, i} \in \mathbb{R}$ estimation of the real number of vehicles for the moment of time i, which is detected by traffic detectors.

Main assumption

$$
N_{\text {est }, i}=f\left(\mathbf{a} \mid N_{\text {track }, i}, V_{\text {track }, i}\right),
$$

where $f: \mathbb{R}^{m} \times \mathbb{N} \times \mathbb{R}_{+} \rightarrow \mathbb{R}, \mathbf{a} \in \mathbb{R}^{m}$ - parameters vector.

Problem statement

Let $N_{\text {det }} \in \mathbb{N}$ be a number of vehicles detected by traffic detectors, which considered as true number of vehicles.

Optimization problem

$$
\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\mathbf{a} \mid N_{\text {track }, i}, V_{\text {track }, i}\right)-N_{\text {det }, i}\right)^{2}} \rightarrow \min _{\mathbf{a}}
$$

where n is a number of two-minutes gaps in a chosen time interval.
Function f representation is dependent on data and is discussed below.

Speed transformation

Denote by $V_{\text {est }, i} \in \mathbb{R}$ estimation of the real average speed of vehicles for the moment of time i, which is detected by traffic detectors.

Speed transformation

$$
V_{\text {est }, i}=b_{1}+b_{2} V_{\text {track }, i},
$$

where b_{1} and b_{2} is a solution of the following problem:

$$
\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(b_{1}+b_{2} V_{\mathrm{track}, i}-V_{\mathrm{det}, i}\right)^{2} \rightarrow \min _{b_{1}, b_{2}}, ., ~}
$$

where $V_{\text {det }, i} \in \mathbb{R}_{+}$is a average speed of vehicles detected by traffic detectors.

Function f representation

Plot dependence $N_{\text {det }}$ vs. $N_{\text {track }}$ and observe dependence similar to log function.

Therefore,

$$
\begin{aligned}
& f\left(\mathbf{a} \mid N_{\text {track }, i}, V_{\text {est }, i}\right)=a_{0}+a_{1} N_{\text {track }, i}+a_{2} \log \left(N_{\text {track }, i}\right)+ \\
& +a_{3} V_{\text {est }, i}+a_{4} N_{\text {track }, i} / V_{\text {est }, i}
\end{aligned}
$$

Gain from speed transformation

$$
V_{\text {est }}=12.34+0.639 V_{\text {track }}
$$

	$V_{\text {est }}$	$V_{\text {track }}$
Mean squared error	$\mathbf{0 . 0 3}$	0.042
Pearson correlation	$\mathbf{0 . 7 8 7}$	0.672

Figure: Plot with vehicle density calculated with (left) and without (right) speed transformation.

Parameter optimization

For vehicle density higher than 0.05 :

$$
\begin{array}{r}
N_{\text {est }}=157.78+4.54 N_{\text {track }}-4.59 \log \left(N_{\text {track }}\right)+0.153 V_{\text {est }}- \\
-85.069 N_{\text {track }} / V_{\text {track }} .
\end{array}
$$

For vehicle density less than 0.05 :

$$
\begin{array}{r}
N_{\text {est }}=117.75+2.11 N_{\text {track }}+41.55 \log \left(N_{\text {track }}\right)-0.327 V_{\text {est }}- \\
\\
-128.89 N_{\text {track }} / V_{\text {est }}
\end{array}
$$

P-values for all items $\leq 10^{-5}$ and therefore every item is significant.

	Train	Test $_{1}$	Test $_{2}$	Test $_{3}$	Test $_{4}$
Mean squared error	$\mathbf{0 . 0 3}$	0.0363	0.0382	0.0339	0.0393
Pearson correlation	0.787	0.823	0.80	$\mathbf{0 . 8 5}$	0.65

Vehicle density estimation on train data

Figure: Vehicle density averaged on 10-minutes obtained after train and ground truth.

Vehicle density estimation on test data

Figure: Vehicle density averaged on 10-minutes obtained after test ${ }_{1}$ and ground truth.

Quality of model for on-line prediction

Figure: Correlation (left) and mean squared error (right) averaged on 10-minutes obtained after 7-days learning experiment.

Entrances and exits properties

Specific issues for entrances and exits:

- extremely small amount of data
- data from traffic detectors is not ground truth

Let $N_{\text {ain }} \in \mathbb{R}_{+}, N_{\text {aout }} \in \mathbb{R}_{+}$be in and out vehicles estimation in highway crossroad.
Denote by $N_{\text {in }} \in \mathbb{R}$ total amount of vehicles entered the highway and $N_{\text {out }} \in \mathbb{R}$ total amount of vehicles leave the highway.
Balance equation

$$
N_{\text {ain }}+N_{\text {in }}=N_{\text {aout }}+N_{\text {out }}
$$

Computation of $N_{\text {in }}$ and $N_{\text {out }}$ is discussed below.

Entrances partition

Let $K_{\text {in }}=\{1, \ldots, K\}$ be a set of entrance indexes.
Denote by $N_{\text {det }}^{k}$ value of $N_{\text {det }}$ on entrance k.

$$
N_{\mathrm{in}}=\sum_{k \in K_{\text {in }}} N_{\mathrm{det}}^{k}
$$

Entrances partition

Let $K_{\text {in }}=\{1, \ldots, K\}$ be a set of entrance indexes.
Denote by $N_{\text {det }}^{k}$ value of $N_{\text {det }}$ on entrance k.

$$
N_{\mathrm{in}}=\sum_{k \in K_{\text {in }}} N_{\mathrm{det}}^{k}
$$

Problem

There exists a set $K_{\text {intrack }} \subset K_{\text {in }}$ such that $\forall k \in K_{\text {intrack }} N_{\text {det }}^{k}$ is undefined.

Therefore, $K_{\text {in }}=K_{\text {indet }} \cup K_{\text {intrack }}$, such that $K_{\text {intrack }} \cap K_{\text {indet }}=\varnothing$ and

- for $k \in K_{\text {intrack }}$ we do not know $N_{\text {det }}^{k}$
- for $k \in K_{\text {indet }}$ we do know $N_{\text {det }}^{k}$

$N_{\text {in }}$ computation

Assumption

For $k \in K_{\text {intrack }} N_{\text {det }, i}^{k}=f\left(\mathbf{a} \mid N_{\text {track }, i}^{k}, V_{\text {est }, i}^{k}\right)$
Denote by $l_{\text {in }}^{k}$ a set of time indexes i such that we have both $N_{\text {det }, i}^{k}$ and $N_{\text {track, }}^{k} i$ data for k-th entrance.

Optimization problem

$$
\sqrt{\frac{1}{\left|l_{\mathrm{in}}^{k^{*}}\right|} \sum_{i \in \ell_{\mathrm{in}}^{k^{*}}}\left(f\left(\mathbf{a} \mid N_{\text {track }, i}^{k^{*}}, V_{\text {est }, i}^{k^{*}}\right)-N_{\text {det }, i}^{k^{*}}\right)^{2}} \rightarrow \min _{\mathbf{a}},
$$

where $N_{\text {track }, i}^{k *}, V_{\text {track }, i}^{k^{*}}, N_{\text {det, } i}^{k^{*}}$ is $N_{\text {track }}, V_{\text {track }}, N_{\text {det }}$ for entrance $k^{*} \in K_{\text {indet }}$, which has the large amount of GPS-track data in the i-th moment of time, $i \in l_{\text {in }}^{k^{*}}$.

Problem statement for entrances and exits

Let $N_{\text {estin }}, N_{\text {estout }}$ be estimation of $N_{\text {in }}, N_{\text {out }}$. Then to find them we propose to solve the following optimization problem

Optimization problem

$$
\begin{aligned}
& \left(N_{\text {ain }}+N_{\text {estin }}-N_{\text {aout }}-N_{\text {estout }}\right)^{2} \rightarrow \min _{N_{\text {estin }}, N_{\text {estout }}} \\
\text { s.t. } & \sum_{i \in l_{\text {in }}}\left|N_{\text {estin }, i}-N_{\text {in }, i}\right|+\sum_{i^{\prime} \in l_{\text {out }}}\left|N_{\text {estout }, i^{\prime}}-N_{\text {out }, i^{\prime}}\right|<\delta,
\end{aligned}
$$

where $I_{\text {in }}=\bigcap_{k \in K_{\text {intrack }}} l_{\text {in }}^{k}, I_{\text {out }}=\bigcap_{k \in K_{\text {outtrack }}} I_{\text {out }}^{k}$ and δ is appropriate approximation error.

Entrances and exits data recovery algorithm

- Choose crossroad, segments related to entrances, exits and segments from which we take data about $N_{\text {ain }}, N_{\text {aout }}$.
- Determine entrances and exits from $K_{\text {intrack }}, K_{\text {outtrack }}$. Available small amount of data we use to determine parameters of random Poisson process for chosen entrances and exits.
- To initialize proposed algorithm we use Poisson process with obtained parameters and data from traffic detectors if they are available. The proposed algorithm targets to satisfy balance equation.

Data recovery visualization

Figure: Blue line - data from traffic detector for one of the entrances, green dots - summary of data from data detector and GPS-tracks. Red line - recovered total number of entered vehicles $N_{\text {estin }}$.

Summary

- We propose algorithms for data recovery on highway using GPS-track data and traffic detectors data.
- We visualize given data to represent target function in the most appropriate way.
- We extend algorithm for highway to highway enters and exits.
- We perform computational experiments for every proposed algorithm.

Thank you for your attention!

