# Learning Structured Representations

#### Artem Bochkarev

Moscow Institute of Physics and Technology

October 26, 2017

Introduction

tructured decoding Bonus





- 2 Genetic Approach
- Tree-structured decoding



- ( E

# Motivation

#### Supervised Machine Learning Task

We have the dataset  $\mathcal{D} = (\mathbf{X}, \mathbf{y}) = (\mathbf{x}_i, y_i)_{i=1}^m, \ \mathbf{x}_i \in \mathcal{X}, y_i \in \mathcal{Y}.$ Our goal is to find a function  $f \in \mathcal{F}, f : \mathcal{X} \to \mathcal{Y}$  such that

$$f = \underset{\mathcal{F}}{\operatorname{arg\,min}} L(f(\mathbf{X}), \mathbf{y}),$$

where L is a loss function (preferably differentiable).

### Standard Setups

• Regression:  $\mathcal{Y} = \mathbb{R}$ 

• Classification: 
$$\mathcal{Y} = \{1, \dots, K\}$$

## Motivation

#### Problems

In many applications it is not clear how so state the problem as a classification of regression task.

- Image scene analysis
- Sentence parsing

### Structured Prediction

In order to solve more complex tasks, we need to make space  ${\cal Y}$  more complicated, for example graphs or even trees.

ъ

# Motivation

### Advantages

- If we are able to predict graph structures, this would solve very complex problems (many real-world structures can be represented with graphs)
- Potentially, it is possible to teach model that would make other models (the end of the mankind)

#### Issues

It is a non-trivial task to obtain key components in the problem statement:

- Approximation function f
- Loss function for scoring structured outputs

3 5

・ロト ・同ト ・ヨト ・ヨト







3 Tree-structured decoding



글 🕨 🖻

### **Problem Statement**

Let  $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^m, \mathbf{x}_i \in \mathbb{R}^n, y_i \in \mathbb{R}$ . Find approximation function  $f : \mathbb{R}^n \to \mathbb{R}$  from model space  $\mathcal{F}$ , minimizing loss function L:

 $f^* = \operatorname*{arg\,min}_{f \in \mathcal{F}} L(f(\mathbf{X}), \mathbf{y})$ 

$$L = \sqrt{\sum_{i=1}^{m} (y_i - f(\mathbf{x}_i)^2)}$$

# Symbolic Regression

Find all valid superpositions defined by grammar G:

B(g,g)|U(g)|S,

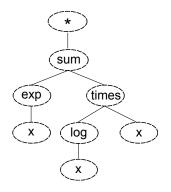
where B – binary operators,  $\{+,-,*,/\}$ , U – unary operators,  $\{\ln,x^{\alpha},\exp\}$ , S – original variables.

#### Valid superpositions

- ① elements are only generation functions g and original variables;
- arity of element of superposition equals arity of used function;
- the order of arguments corresponds to the order of arguments of used function;
- Odomain of the next function is in the codomain of current function.

## Tree of a superposition

Each superposition f corresponds to the tree of superposition  $\Gamma_f$ . Depth of a superposition is a depth of the corresponding tree.



| Tree $\Gamma_f$ |                                        |  |  |  |  |  |
|-----------------|----------------------------------------|--|--|--|--|--|
| 1               | Root - *;                              |  |  |  |  |  |
| 2               | $V_i \mapsto g_r;$                     |  |  |  |  |  |
| 3               | $val(V_j) = v(g_{r(i)});$              |  |  |  |  |  |
| 4               | $dom(g_{r(i)}) \supset cod(g_{r(j)});$ |  |  |  |  |  |
| 6               | arguments $g_r$ are ordered;           |  |  |  |  |  |
| 6               | $x_i$ — leaves $\Gamma_f$ .            |  |  |  |  |  |

ъ

# Genetic algorithm

### Generating superpositions with genetic algorithm

- 1: while required accuracy is not achieved do
- 2: Select subset of models, which minimizes loss function L, from population  $\mathcal{M}$
- 3: Swap subtrees of two random models to obtain new valid superposition (permutation)
- 4: Replace random subtree with a new random one (mutation)
- 5: Add newly generated models to the population  $\mathcal{M}$ .
- 6: end while

Kulunchakov, A. S., V. V. Strijov. Generation of simple structured information retrieval functions by genetic algorithm without stagnation. *Expert Systems with Applications* 85 (2017): 221-230.











# Problem

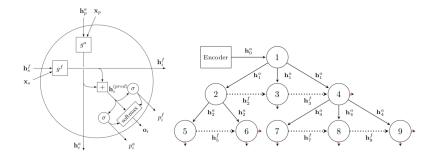
### Approach

Reconstruct trees using encoder-decoder framework. This paper focuses on decoding trees from latent representations.

### Architecture

Top-down, recursive, using doubly-recurrent neural network. Both the ancestral (parent-to-children) and the fraternal (sibling-to-sibling) flows of information are modeled with recurrent modules.

### Model architecture



# Model structure

### Definitions

Let  $\mathcal{T} = \{\mathcal{V}, \mathcal{E}, \mathcal{X}\}$ , be an undirected labeled tree.

- $\mathcal{V}$  are vertices
- $\mathcal{E}$  are edges
- ${\mathcal X}$  are vertex labels

For a node  $i \in \mathcal{V}$  denote parent as p(i) and previous sibling as s(i). Let  $g^a$  and  $g^f$  be functions which apply one step of the two separate RNNs.

## Model Structure

#### Hidden states update

$$\begin{split} \mathbf{h}_{i}^{a} &= g^{a}(\mathbf{h}_{p(i)}^{a}, \mathbf{x}_{p(i)}) \\ \mathbf{h}_{i}^{f} &= g^{f}(\mathbf{h}_{s(i)}^{f}, \mathbf{x}_{s(i)}) \end{split}$$

### Predictive hidden state

$$\mathbf{h}_{i}^{(pred)} = \tanh(\mathbf{U}^{f}\mathbf{h}_{i}^{f} + \mathbf{U}^{a}\mathbf{h}_{i}^{a}),$$

where  $\mathbf{U}^f \in \mathbb{R}^{n \times D_f}$  and  $\mathbf{U}^a \in \mathbb{R}^{n \times D_a}$  are learnable parameters. This state is used to predict a label for a node.

# Node prediction

#### Topological probabilities

$$p_i^a = \sigma(\mathbf{u}^a \cdot \mathbf{h}_i^{(pred)})$$
$$p_i^f = \sigma(\mathbf{u}^f \cdot \mathbf{h}_i^{(pred)})$$

### Label prediction

$$\mathbf{o}_i = \mathsf{softmax}(\mathbf{W}\mathbf{h}_i^{(pred)} + \alpha_i \mathbf{v}^a + \varphi_i \mathbf{v}^f),$$

where  $\alpha_i, \varphi_i \in \{0,1\}$  are binary variables indicating the topological decisions.

# Forward pass

#### Generation procedure

After the node's output symbol  $\mathbf{x}_i$  has been obtained by sampling from  $\mathbf{o}_i$ , the cell passes  $\mathbf{h}_i^a$  to all its children and  $\mathbf{h}_i^f$  to the next sibling (if any), enabling them to realize their states. This procedure continues recursively, until termination conditions cause it to halt.

#### Loss function

$$\mathcal{L}(\hat{\mathbf{x}}) = \sum_{i \in \mathcal{V}} \mathcal{L}^{label}(\mathbf{x}_i, \hat{\mathbf{x}}_i) + \mathcal{L}^{topo}(\mathbf{p}_i, \hat{\mathbf{p}}_i),$$

the former is a cross-entropy loss, the latter is a binary cross-entropy loss.

Alvarez-Melis, D., Jaakkola, T. S. (2017). Tree-structured decoding with doubly-recurrent neural networks.

# Backward pass

#### Gradient computation

- Gradient of the current node's label prediction loss w.r.t. softmax layer parameters W, v<sup>a</sup>, v<sup>f</sup>: ∇<sub>θ</sub>L(x<sub>i</sub>, x̂<sub>i</sub>)
- **2** Gradients of topological prediction variables loss with respect to sigmoid layer parameters:  $\nabla_{\theta} \mathcal{L}(p_i^a, t_i^a)$  and  $\nabla_{\theta} \mathcal{L}(p_i^f, t_i^f)$
- ${f 0}$  Gradient of predictive state parameters with respect to  ${f h}^{(pred)}$
- Gradient of predicted ancestral and fraternal hidden states with respect to  $g^f$  and  $g^a$ 's parameters.

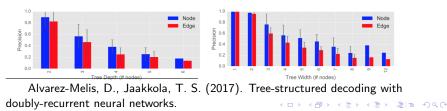
# Experiment 1

#### Problem

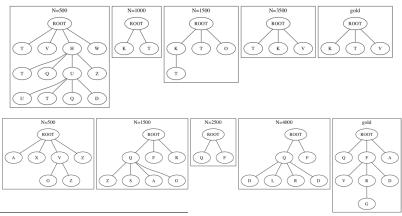
Synthetic dataset of randomly generated trees with English letters as node labels.

#### **Evaluation** loss

 $\ensuremath{\mathsf{Precision}}$  and recall of recovering nodes and edges present in the gold tree.



## Experiment 1

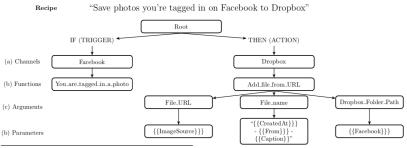


Alvarez-Melis, D., Jaakkola, T. S. (2017). Tree-structured decoding with doubly-recurrent neural networks.  $\langle \Box \rangle \langle \Box \rangle$ 

# Experiment 2

#### Problem

IFTTT (IF This Then That) dataset. The goal is to parse natural language sentence to tree recipe representation.



Alvarez-Melis, D., Jaakkola, T. S. (2017). Tree-structured decoding with doubly-recurrent neural networks.  $\langle \Box \rangle \langle \Box \rangle$ 

Artem Bochkarev Randomized Sparsification

### Experiment 2

| Method     | Channel | +Func | F1   | Method     | Channel | +Func | F1   |
|------------|---------|-------|------|------------|---------|-------|------|
| retrieval  | 36.8    | 25.4  | 49.0 | retrieval  | 43.3    | 32.3  | 56.2 |
| phrasal    | 27.8    | 16.4  | 39.9 | phrasal    | 37.2    | 23.5  | 45.5 |
| sync       | 26.7    | 15.4  | 37.6 | sync       | 36.5    | 23.5  | 45.5 |
| classifier | 64.8    | 47.2  | 56.5 | classifier | 79.3    | 66.2  | 65.0 |
| posclass   | 67.2    | 50.4  | 57.7 | posclass   | 81.4    | 71.0  | 66.5 |
| SEQ2SEQ    | 68.8    | 50.5  | 60.3 | SEQ2SEQ    | 87.8    | 75.2  | 73.7 |
| SEQ2TREE   | 69.6    | 51.4  | 60.4 | SEQ2TREE   | 89.7    | 78.4  | 74.2 |
| GRU-DRNN   | 70.1    | 51.2  | 62.7 | GRU-DRNN   | 89.9    | 77.6  | 74.1 |
| LSTM-DRNN  | 74.9    | 54.3  | 65.2 | LSTM-DRNN  | 90.1    | 78.2  | 77.4 |
|            |         |       |      |            |         |       |      |

Alvarez-Melis, D., Jaakkola, T. S. (2017). Tree-structured decoding with doubly-recurrent neural networks.

# Different approaches

#### Heuristics from other papers

- Introduce special terminal tokens
- 4 independent LSTMs, which act in alternation instead of simultaneously
- Build trees using bottom-up approach
- Concatenating parent and sibling hidden states

#### Loss function

Explicit tree generation + cross-entropy loss

ъ









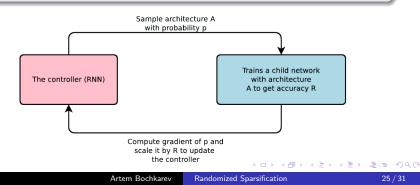


э

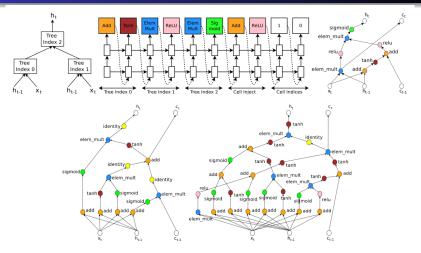
# Bonus

### Google research

Since May Google Brain team is working on AutoML – an automation of the design of neural networks. They claim that auto-generated neural networks already exceeded state-of-the-art human design for some ML tasks.

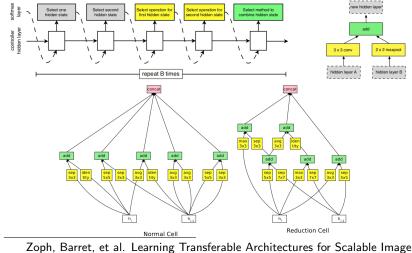


# NLP



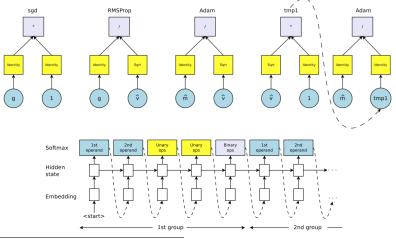
Zoph, B., and Quoc V. Le. Neural architecture search with reinforcement learning. *arXiv preprint* arXiv:1611.01578 (2016).

### Image recognition



Zoph, Barret, et al. Learning Transferable Architectures for Scalable Image Recognition. *arXiv preprint* arXiv:1707.07012 (2017).

### Optimization methods



Bello, Irwan, et al. Neural optimizer search with reinforcement learning. arXiv preprint arXiv:1709.07417 (2017).

Artem Bochkarev

Randomized Sparsification

### Reference I



Alvarez-Melis, D. and Jaakkola, T. S. (2017).

Tree-structured decoding with doubly-recurrent neural networks.

- Bello, I., Zoph, B., Vasudevan, V., and Le, Q. V. (2017). Neural optimizer search with reinforcement learning. *arXiv preprint arXiv:1709.07417*.
- Dong, L. and Lapata, M. (2016). Language to logical form with neural attention. arXiv preprint arXiv:1601.01280.

## Reference II

 Kulunchakov, A. and Strijov, V. (2017). Generation of simple structured information retrieval functions by genetic algorithm without stagnation. *Expert Systems with Applications*, 85:221–230.
Tai, K. S., Socher, R., and Manning, C. D. (2015). Improved semantic representations from tree-structured long short-term memory networks.

arXiv preprint arXiv:1503.00075.

Zhang, X., Lu, L., and Lapata, M. (2015). Top-down tree long short-term memory networks.

arXiv preprint arXiv:1511.00060.

## Reference III



Zoph, B. and Le, Q. V. (2016). Neural architecture search with reinforcement learning. *arXiv preprint arXiv:1611.01578*.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2017). Learning transferable architectures for scalable image recognition.

arXiv preprint arXiv:1707.07012.