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A conceptual basis of dependency estimation:
The compactness hypothesis

The set of real-world objects o€ (2
The hidden characteristic of an object (goal characteristic) yeVY
The sought-for decision rule V(0): Q—>Y

The main idea:

A metric is to be chosen in the set of real-world objects
p(0,®"): QxQ >R

p(O)',O)”) :p((D”,(D’) > O, p((l)',(D”) > O |f (D’ + (D”, p((l)’,(l)’,)+p(0)",(1)”,) > p((D,,(D”’)
The choice is appropriate if the metric meets the compactness hypothesis

(Emmanuel Braverman. Ph.D. Thesis: “Experiments on learning a machine to
distinguish patterns. 1961, Institute of Automation and Remote Control, Moscow):

If two objects o', " Q) are similar to each other in the sense of the chosen metric
p(w',®")=0, their values of the goal characteristic are mostly almost the same y(o')=y(»").

Hence, the decision rule follows:

For close objects p(w',®") =0, close decisions are to be made
V(o) = y(o") in the problem of pattern recognition Y ={y,,..., Y.}
V(o) = y(o") in the problem of regression estimation Y =R



Dipole in a metric space
The metric space of real-world objects: weQ, p(o',®") — the metric
A dipole in the metric space — an ordered pair: <o._;, 0, >€ QxQ

A simplest instantiation of the compactness hypothesis

Membership of an arbitrary object o < Q2 in one of two classes
1if p(oy,®) < p(o_;, o), There are too few elements in the set of objects 2.

y(o) = {_1 if p(ow,®) > (0, ®). Besides, only a fini_te training set of objects is accessible to
How should the dipole be chosen? the observer {(Dj’ 1=1... N}
A more “delicate” realization of the compactness hypothesis

In a dense hull of the initially sparse metric space
A hypothetical dense space, in which the set of real-world objects is subset of, maybe,
Isolated elements: QQ o Q. The dipole is to be chosen in this dense hull.

a,0,€Q, Hlo,,0,)= {8 eQ:pla,,9)= p(ocl,S)} — metric “hyperplane” in Q
oy (ay,0y)eH(ay,04) — projection of weQ onto the “hyperplane” in Q

Scorefunction: sign-dependent -
distangg of the point from the d(o|o_;,04) :{ p(wr;, ) "]: p(oy, @) < plocy, ),
“hyperhlane” in Q) —p(®,;,,®) If p(o,,®)>p(a_;,m).

0o 8O This is an analog of the linear approach to dependence
| d estimation:
(@] oy, 04) All the decisions on the hidden characteristic y of a real-

world object o are to be made only from
Y - H(oy, ) the sign-dependent distance d(®|a_;, o).



Dipole in a metric space
The metric space of real-world objects: weQ, p(o',®") — the metric
A dipole in the metric space — an ordered pair: <o._;, 0, >€ QxQ

A simplest instantiation of the compactness hypothesis
Membership of an arbitrary object o < Q2 in one of two classes

A 1if | o), There are too few elements in the set of objects Q.
V(w) = {_1Iif E ((31 (;)))) ig ((21 (:)D)) Besides, only a finite training set of objects is accessible to
1 -1 . -
How should the dipole be chosen?  the observer {o;, j=1,..,N}
A more “delicate” realization of the compactness hypothesis

In a dense hull of the initially sparse metric space
A hypothetical dense space, in which the set of real-world objects is subset of, maybe,
Isolated elements: QQ o Q2. The dipole is to be chosen in this dense hull.

a,0,€Q, Hlo,,0,)= {8 eQ:pla,,9)= p(ocl,S)} — metric “hyperplane” in Q
oy (ay,0y)eH(ay,04) — projection of weQ onto the “hyperplane” in Q

Score'function: sign-dependent d(oolocl,Otl)={ p(wy, ) if p(ay, o) <p(a_, o),

distange of the point from the :
“hyperhlane” in Q) —p(®,;,,®) If p(o,,®)>p(a_;,m).

1if d(w|a_4,a,) +b >0,
-1if d(o|a_;,0,) +b <O.
Regression: y(ow)=ad(o|o_;,a,) +b

Classification: y(w) :{
d(o|a_y, o)

o VH (a_l , 0(.1)



Hinge functions: A bridge to particular problems
of dependence estimation

la(y.d)=a(y—d)’ q(y,d)=In(L+e ) ‘q (v ) 0, yd=ze
] — 1
1-<vyd,yd<g
1 € —> MaX
0 y d 0 yd 0 ¢ yd
Linear regression with Two-class pattern recognition: Two-class pattern recognition:
quadratic loss logistic regression maximum margin

But first, the initially sparse metric space of real-world objects is to be embedded into a
dense hull Q o Q, in which the dipole could be continuously chosen.

A way:

Embedding an arbitrary metric space into a linear space.
However, it will not be a proper metric space.

The metric will be defined in it not for all pairs of elements.

But the initial metric space will be embedded isometrically.



An instrument of embedding a metric space into a linear space:
Commonality of two elements of a metric space

Metric space Q with metric p(®’,®"):

p(o,®) =0, p(0',0") >0 if &' #®"; p(o', ") =p(o”,®);
p(o, ") +p(",®")=p(w,®") — triangle inequality

Let us choose an element of the metric space ¢ € Q as its “center”
Two-argument commonality function K, (o',»"): QxQ — R

! " 1 ! 4 ! U4
Ko(@,07) =] p*(00,4)+p* (@, 6) ~p* (@) |
Theorem 1. Properties of the commonality function:
K, (@, 0") =K, (o", @) — symmetry
K, (®,0) = p*(m,¢) = 0 — non-negativity for »' = "
| K, (0, 0")|< \/ K, (e, (o')\/ K, (o",0") —inequality of Cauchy-Bunyakowsky type
Ky (0,0") = K, (0, 0") - K, (o, §) - K, (0",0) + K, (¢, ¢) — the rule of center translation
p*(0,0") = K, (0, 0) + K, (0", 0") — 2K, (', ") — return to the metric

It resembles very much the inner product!
But there are no linear operations as yet!?



Commonality matrix for a finite metric space
Let us assume, for simplicity sake, that the set of real-world objects with metric p(w’, ®") is finite
|Q| =M, Q={o,,..,0,}.
K, =| K,(®,;),i,j=1..,M | - the symmetric commonality matrix for some center ¢ €

Co1 €ER,..,E\ ER eigen values are real numbers

for an arbitrary metric, the matrix may be not
>0,..., >0, 1 <0,..., <0 . o !
? Mo S J @ bRt Som positive definite

Py Y p, +d, =M —signature of the commonality

Theorem 2. The signature of matrix K, does not depend on the choice of the center in the
metric space ¢ € Q.

Thus, any metric on a finite metric space |Q| = M is characterized by its signature p+qg =M.

Definition. Metric is said to be proto-Euclidean one, if for any subset of objects

{w,...,0y} matrix P, = [—pz(a)j,o)l), ),1=1.., N] IS conditionally positive semidefinite:
N

c'P,c>0, 1'c=> "~ ¢, =0.

=17

Theorem 3. The signature of a proto-Euclidean metric p=M, q=0.

In other words, the commonality matrix of a finite metric space with a proto-Euclidean metric
(finite proto-Euclidean metric space) is positive semidefinite for any choice of the center.




Indefinite inner product
and pseudo-Euclidean linear space

Let metric p(»’,®") on the set of objects | 2|=M be of signature p+q=M.
Let the following two-argument real-valued function be defined over the entire linear space R" :

r "\ - LIT . oM M | ()
KX, x")=x"J X"R"xR" >R Jp,q=( pxp _pxq j(l\/lxl\/l)

signature depends only on the metric qup |qxol
Properties:
Symmetricity K(x',x") = K(x",x)
Bilineariry K(c'X +c"X", X") = c'K(X',x") + c"K (X", x")

The property of non-negativity when
the arguments coincide is absent

| 0
Kx,x)=x"d, x=u"v)| P® P I —yTy—vTiv<0if uTu<v'v
X 0 -1 Jlv

axp axq

K (x,X) <0 for some x e R

This is no inner product!
Such a function is said to be indefinite inner product,
and the linear space R" — pseudo-Euclidean linear space.

A finite-dimensional linear apace with indefinite inner product is called the Krein space.

Mark Krein (1907-1989),
Professor of Odessa Civil-Engineering Institute.



Vector length and distance between vectors
In the pseudo-Euclidean linear space

The pseudo-Euclidean linear space is neither normed (not all elements have norm) nor
metric (metric is defined not for all pairs of elements).

Nevertheless, it is possible to isometrically embed an arbitrary finite metric space of
signature p+q=M into apseudo-Euclidean linear space of the same signature.

Isometric embedding of an arbitrary metric space
Into a pseudo-Euclidean linear space

Let Q={w,,...,®,, } be a finite metric space with metric p(w’,®"),
p+g=M beitssignature, and ¢ € Q2 be an arbitrary element assigned as the center.

Theorem 4. There exist M real-valued vectors x¢,jeIRi'\" , ]=1,..., N, in the pseudo-Euclidean
linear space of signature p+q= M, for which are defined:

(¢J’O) (X¢J p.q ¢J)]/2 p(coj,(l))
>0

F(X, 10X ) =L (X =% ) 7354 (X, ¢|)]1/2 =p(w;,m,) distance between pairs of
) >0 vectors

the norm distance to the zero point

the metric
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Discriminant (score) functions in a pseudo-Euclidean linear space

Discriminant dipole:
An ordered pair of vectors < a,_,,a, >e R xR", a_,a, e R" —the nodes of the dipole.

In what follows, we shall consider only dipoles, for which the metric distance between the
nodes is defined, i.e., the squared distance between the nodes is positive

r’(o,a)=(—a) J (a,—a)>0
The axis defined by a dipole:
{XC eRY: x.=(1-c)a_+ca, eR"Y, CER}CRM
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Discriminant functions in a pseudo-Euclidean linear space

Discriminant dipole:
An ordered pair of vectors < a,_,,a, >e R xR", a_,,a, e R" —the nodes of the dipole.

In what follows, we shall consider only dipoles, for which the metric distance between the
nodes is defined, i.e., the squared distance between the nodes is positive

r’(o,a)=(—a) J (a,—a)>0
The axis defined by a dipole:
{XC eRY: x.=(1-c)a_+ca, eR"Y, CER}CRM

X(o_,,0,) — projection of a vector xeR" on the axis RM
defined by the dipole
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Discriminant functions in a pseudo-Euclidean linear space

Discriminant dipole:
An ordered pair of vectors < a,_,,a, >e R" xR", a_,,a, e R" —the nodes of the dipole.

In what follows, we shall consider only dipoles, for which the metric distance between the
nodes is defined, i.e., the squared distance between the nodes is positive

r’(o,a)=(—a) J (a,—a)>0
The axis defined by a dipole:
{XC eRY: x.=(1-c)a_+ca, eR"Y, CER}CRM

X(o_,,0,) — projection of a vector xeR" on the axis RM

defined by the dipole
YR d(x| o, 0)

with respect d
Theorem 5. If r*(a_,,a,) >0 then d’(X|a_,,a,)>0 for t0 the sign /

any vector xeR", and, with respect to the sign /

o 2 1 Oy
d(X|0L1’a1):E( (a,_l,X)—l' (Gl,X))r(a OL).
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Discriminant functions in a pseudo-Euclidean linear space

Discriminant dipole:
An ordered pair of vectors < a,_,,a, >e R xR", a_,,a, e R" —the nodes of the dipole.

In what follows, we shall consider only dipoles, for which the metric distance between the
nodes is defined, i.e., the squared distance between the nodes is positive

r’(o,a)=(—a) J (a,—a)>0
The axis defined by a dipole:
{XC eRY: x.=(1-c)a_+ca, eR"Y, CER}CRM

X(o_,,0,) — projection of a vector xeR" on the axis RM T~k (o, a,)
defined by the dipole TS~ X
d(X|0L_1,OL1) / o

Theorem 5. If r’(a ,,a,) >0 then d*(x|a ,,a,)>0 for ‘t"’itheri?gﬁd /
any vector xeR", and, with respect to the sign

d(x|o ) :%( 2(a_1,x)—r2(a1,X)) r(al . )

Parametric family of discriminant functions: Q_; class —1

>0 =the positive part,

d(x|a_,, o)< =0=the neutral part,
<0 =the negative part.
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Training: Choice of the discriminant dipole
A training set in the metric space of real-world objects weQ:

{(@,,y;), j=1...N}, distances | p(w;,»), j.I=1..,N |, classes y; = y(o,).

The center Q) + a real-world object e = 0eR" + vector x, ,cR"
(in the pseudo-Euclidean space).

The training process boils down to the choice of the dipole <a_,,a, > R™ xR:

We shall consider the dipole’s nodes as linear (affine) combinations of the vectors
Ky ...,x¢, }, into which the objects of the training set are mapped:

Z—l -1} <I>co’ I;Il—lj_l
11 —1J’ Z—laj_o

a, =
o, = " C, . X " c,. =1
. . _1 2 2
Score function: d(x|oc_1,oc1)—§(r (0, X)—r (ocl,x))

=1L M) j=1 Li

1
r(o_y,0,)
Theorem 6: For any real-world object weQ, any training set {coj, j=1,..., N}CQ, and any
dpeQ):

r2(0y, %) — 2 (0%, ) = 2 (—p% (), ) )a; +b, r¥ (e, ay) :%zz(_pz(@j,@,))aja,

1=1 j=1 1=1




Training: Choice of the discriminant dipole
A training set in the metric space of real-world objects weQ:

{(@;,y;), j=1...N}, distances | p(w;,»), j.I=1..,N |, classes y; = y(«,).

The center Q) + a real-world object e = 0eR" + vector x, ,cR"
(in the pseudo-Euclidean space).

The training process boils down to the choice of the dipole <a_,,a, > R™ xR:

We shall consider the dipole’s nodes as linear (affine) combinations of the vectors
Ky ...,x¢, }, into which the objects of the training set are mapped:

Yo, =1,
2—1—11 o,0; 11—11

—_ N C .X N C 1 a 1] _11’ Z—laj_o
O = Zia™i%e j=inj b
. 1
Scaled score function: r(a_,a)dX|a_,a,)= E(rz(a_l, X)—r*(a,, x))

For any real-world object me, any training set {o;, j=1,...,N}cQ, and any ¢eQ :

(0 X,,) — (e %) = 2 (P (@, 0) )&y +b,

@) =23 Y (o,0)an.

j=1 1=1

15
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The general training problem
Training set: {(®;,y,), j=1...N}, p(o; o), j.I=1,

: N 5

Unified items ;c:oreI function d(|a,.ay,b) = _(-p’(®;,®))a; +b

of the training egularization

criterion function: > (P (e 0))a3>0, Y a =0
squared dipole length

The only

problem-specific | Hinge function q(y.d(@|a,....,ay,b))=q(y,®a,,...,a,,b)

item

The unified training criterion

Z, 1Z| 1( “(0;,0) )a a,+CZ Q(yJ,w ...,y ,0) > min(a,,...,a_,b), Zilal -

Particular versions of the problem-specific hinge function

Regression estimation Z?‘:l{y_(ztl(_pz(@j ,ool))aI +b)}2
Logistic regression Z'_\'_ In {1+ exp[_y (ZlN_l(_pz(@l ,o)))a, )+b}}
Maximum margin T‘ max{O 1- V(Z| (P (ooj,ool))al)+b}

All the particular hinge-function summands are convex.
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The general training problem
Training set: {(®;,y,), j=1...N}, p(o; o), j.I=1,

: N 5

Unified items ;c:oreI function d(|a,.ay,b) = _(-p’(®;,®))a; +b

of the training eégularization

criterion function: > (P (e 0))a3>0, Y a =0
squared dipole length

The only

problem-specific | Hinge function q(y.d(@|a,....,ay,b))=q(y,®a,,...,a,,b)

item

The unified training criterion

Z > (-p (coj,ool )a, a,+CZ ay;,0,,a,..,a,,b) > min(a,...a,,b), Y. a =

Partlcular versions of the problem-specific hinge function

Regression estimation Z?‘:l{y_(ztl(_pz(@j ,ool))aI +b)}2
Logistic regression Z'_\'_ In {1+ exp[_y (ZlN_l(_pz(@l ,o)))a, )+b}}
Maximum margin T‘ max{O 1- V(Z| (P (ooj,ool))al)+b}

All the particular hinge-function summands are convex.
But the unified regularization term may be nonconvex in the case of an arbitrary metric.
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Nonconvex maximum margin classifier
The training criterion
5,), Restriction

> —1Z| (P (0;,0))a;a +CZ &> min(a,,...,ay,b,8,,...8,), S
a. =
Yi |:ZI-1( (“) O)'))a +bJ>l S §20, =1 N, is met éutomatically.
In the general case, this is a nonconvex quadratic programming problem.
i "N (L2 lity restriction ZN a, =0 is convex onl
Function ijlz|:1( p*(;, ) )a;a under equality res 8 = y

for a proto-Euclidean metric.
The necessary condition of the minimum: The dual problem

ZJ S —(]/4)Z?le:\llyjy| (_pz(mj’ml))kjkl — max(kli-";}\‘[\]);
> Yk =0,0<0<C j=1,...N.

WI2)> o D P, @)Y —CY Ly
a _ 2 | a. =0, b= jo<r;<C ) 1A, >0 J ja;=C 7
(1/ )yj | Z =) Zj:O<k-<C7\'j

For an arbitrary metric, the solution of the non-concave dual problem may result in the
negative value of the squared maximum margin:

Y&l =22 > Ly (-0 (@) @)A1, 20.
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Nonconvex maximum margin classifier
The training criterion
5,), Restriction

> _1Z| 1( (1O )a a +CZ £, min(a,,...,ay,b,5,,...8),
Z _1aJ =0

Yi |:ZI-1( (“) O)'))a +bJ>l S §20, =1 N, is met automatically.

In the general case, this is a nonconvex quadratic programming problem.
Function Z';':lztl(—pz(mj,ml))aja, under equality restriction Z?:laj =0 is convex only

for a proto-Euclidean metric.
The necessary condition of the minimum: The dual problem

%ZJ S _(]/4)2?:12:\;)’,-% (_pz(mj’ml))}‘jkl — maX(Kl,...,kN),

> Yk =0,0<0.<C i =1,...N.
N N 2 uadratically constrained
Zj=1z|=1yjy' (—p ((Di’(")l))ijl 206>0 qquadratlc gptlmlzatlon

WI2)> o D P, @)Y —CY Ly
a _ 2 | a. =0, b= jo<r;<C ) 1A, >0 J ja;=C 7
(1/ )yj | Z =) Zj:O<k-<C7\'j

In this case, the squared maximum margin remains always positive for an arbitrary metric:

Y&l =23 > LY (-pP (@) @))n 2, >0,
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Decision rule (score function) in an arbitrary metric space
The equivalent form of the discriminant function, which is completely determined by N-+1

real numbers (a,...,a,,b): /new object

new object

d(wla,...,a,,b)= { —p*(®;, ®))+b |=0, This is a linear decision rule In
( l?l - ’) ‘1 J( A J )) the pseudo-Euclidean space

p ap—— My : :
arameters to be es“mate‘j objects of the training Set spanned over the given metric
=0 = space of real-world objects
Zjl i ZJlle( )aa|>0 p J

Ellmlnatlng the dlfference between linear and nonlinear decision rules

In a pseudo-Euclidean space
Despite the fact that neither a metric space nor its pseudo-Euclidean embedding do not lend
themselves to easy geometrical interpretation, we can conventionally demonstrate the
essence of this boundary In an approprlate Euclidean space:
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Decision rule in an arbitrary metric space
The equivalent form of the discriminant function, which is completely determined by N-+1

real numbers (a,...,a,,b): /new object

new object

d(wla,...,a,,b)= { —p*(®;, ®))+b |=0, This is a linear decision rule In
( l?l - ’) ‘1 J( A J )) the pseudo-Euclidean space

p ap—— My : :
arameters to be es“mate‘j objects of the training Set spanned over the given metric
=0 = space of real-world objects
Zjl i ZJlle( )aa|>0 p J

Ellmlnatlng the dlfference between linear and nonlinear decision rules

In a pseudo-Euclidean space
Despite the fact that neither a metric space nor its pseudo-Euclidean embedding do not lend
themselves to easy geometrical interpretation, we can conventionally demonstrate the
essence of this boundary in an appropriate Euclidean space:

A

o Yi=1 Linearly separable classes

Linearly inseparable classes

The separating ability
depends on the accepted
o O metric
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Decision rule in an arbitrary metric space
The equivalent form of the discriminant function, which is completely determined by N-+1

real numbers (a,...,a,,b): /new object

new object

d(@|a1,,,,,aN,b):1{z'_“ a. (-p*(®;, ®))+b |=0,  Thisisalinear decision rule in
) o i\ the pseudo-Euclidean space

objects of the training set spanned over the given metric
ZN _ _Z 1Z| 1( 0 ((D,,(Dﬂ)a a, > 0. space of real-world objects
j=

le

Ellmlnatlng the difference between linear and nonlinear decision rules

In a pseudo-Euclidean space
Despite the fact that neither a metric space nor its pseudo-Euclidean embedding do not lend
themselves to easy geometrical interpretation, we can conventionally demonstrate the

essence of this boundary in an appropriate Euclidean space:

Parameters to be estimated [

A

o Yi=1 Linearly separable classes

Linearly inseparable classes
An urgent desire:

to eliminate the difference
__q00 between separable and
Yi= inseparable clases
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Decision rule in an arbitrary metric space
The equivalent form of the discriminant function, which is completely determined by N-+1

real numbers (a,...,a,,b): /new object

new object

d(wla,...,a,,b)= { —p*(®;, ®))+b |=0, This is a linear decision rule In
( l?l - ’) ‘1 J( A J )) the pseudo-Euclidean space

p ap—— My : :
arameters to be es“mate‘j objects of the training Set spanned over the given metric
=0 = space of real-world objects
Zjl i ZJlle( )aa|>0 p J

Ellmlnatlng the dlfference between linear and nonlinear decision rules

In a pseudo-Euclidean space
Despite the fact that neither a metric space nor its pseudo-Euclidean embedding do not lend
themselves to easy geometrical interpretation, we can conventionally demonstrate the
essence of this boundary in an appropriate Euclidean space:

A

o Yi=1 Linearly separable classes

Linearly inseparable classes
An urgent desire:

to eliminate the difference
__q00 between separable and
Yi= inseparable classes
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Decision rule in an arbitrary metric space
The equivalent form of the discriminant function, which is completely determined by N-+1

real numbers (a,...,a,,b): /new object

new object

d(o|a,..,ay,b) :_{Z'_“Zlaj (_pZ(mj | 0)))+b >0, Thisisalinear decision rule in
) o2 " the pseudo-Euclidean space

objects of the training set spanned over the given metric
ZN _ _Z 1Z| 1( 0 ((D,,(Dﬂ)a a, > 0. space of real-world objects
j=

le

Parameters to be estimated [

Ellmlnatlng the difference between linear and nonlinear decision rules

In a pseudo-Euclidean space
Despite the fact that neither a metric space nor its pseudo-Euclidean embedding do not lend
themselves to easy geometrical interpretation, we can conventionally demonstrate the

essence of this boundary in an appropriate Euclidean space:

A

o Yi=1 Linearly separable classes

Linearly inseparable classes
An urgent desire:

% to eliminate the difference
__q00 between separable and
Yi= inseparable classes

Way-out: An extension of the well-known notion of potential functions
from finite-dimensional linear spaces onto metric spaces.



25

Decision rule in an arbitrary metric space
The equivalent form of the discriminant function, which is completely determined by N-+1

real numbers (a,...,a,,b): /new object

new object

d(wla,...,a,,b)= { —p*(®;, ®))+b |=0, This is a linear decision rule in
( l?l - ’) ‘1 J( A J )) the pseudo-Euclidean space

p ap—— My : :
arameters to be es“mate‘j objects of the training Set spanned over the given metric
=0 = space of real-world objects
Zjl i ZJlle( )aa|>0 p J

Ellmlnatlng the dlfference between linear and nonlinear decision rules

In a pseudo-Euclidean space
Despite the fact that neither a metric space nor its pseudo-Euclidean embedding do not lend
themselves to easy geometrical interpretation, we can conventionally demonstrate the
essence of this boundary in an appropriate Euclidean space:

A

o Yi=1 Linearly separable classes

Linearly inseparable classes
An urgent desire:

% to eliminate the difference
__q00 between separable and
Yi= inseparable clases

M. Aizerman, E. Braverman, L. Rozonoer. Theoretical foundations of the potential function
method in pattern recognition learning. Automation and Remote Control, 1964, Vol. 25.




26

Potential function (kernel) in a finite-dimensional linear space

The initial inner product:  K(X,x")=x""x", X', x"eR"

The initial Euclidean metric: p(x’,x")=[ K (X, x')+K(x” X")—2K (X, ”)] [(x’—x”)T(x’—x”)]y2

Hilbert-space embedding —

a new inner product: K(X,X") = exp( —Bp° (X, X ))—radlal potential function

The new metric p(X,X") =| K(X,x'| B)+ K (X", x") = 2K (X, ")J

in the Hilbert space: \/E[l—exp( Bp2(X., ”))]

However: p(X',x"y —>0 when 3 —>0

Normalization: p(X',x") = —=| L-exp(-Bp* (X, x")
Exw

The kernel trick:
A linear function in the Hilbert space will produce a nonlinear one in the original space.

The idea: To apply such a transformation to an arbitrary metric.
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Metric decision functions of growing complexity

The separating ability depends on the d(w|a,,...,ay,b) = ZL(—PZ((’J,— w))a; +b =0,

accepted metric p(®',®") ZN a.=0

j=1 ] ~

. . . . . p(p[B)

A parametric family of metric transformations, which 5

guarantees improving the separating ability of the initial
metric (family of saturable metrics):

1
501 ) =~ 1-exp - (.09) VB

Theorem 7. If p(®',®") is a metric on Q then
p(w, " |B) is a metric, too, with any value of the ! l_ 1 i- P
parameter >0, and p(o,®"|B)— p(»’,»") when B—0. 3 S

Theorem 8. Any training set {(oaj Y;=11), 1=1,..., N} with any metric p(o',®") is
separable in the metric space p(w’, " |B) if the parameter >0 is large enough.

The choice of the metric transformation parameter B is analogous to the choice of the
parameter of a radial potential function in a finite-dimensional feature space:



Metric decision functions of growing complexity. Illustration

Separable case: Non-Separable case:
Using of metric transformations
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Thank you for your attention!
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