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A conceptual basis of dependency estimation:  

The compactness hypothesis  

The set of real-world objects  

The hidden characteristic of an object (goal characteristic)  

The sought-for decision rule  ˆ( ):

y

y





 

 

The main idea:  

A metric is to be chosen in the set of real-world objects  
( , ) :       

( , ) ( , ) 0          , ( , ) 0      if     ,          ( , ) ( , ) ( , )                
 

The choice is appropriate if the metric meets the compactness hypothesis  

(Emmanuel Braverman. Ph.D. Thesis: “Experiments on learning a machine to 

distinguish patterns. 1961, Institute of Automation and Remote Control, Moscow):  

If two objects ,    are similar to each other in the sense of the chosen metric 

( , ) 0     , their values of the goal characteristic are mostly almost the same ( ) ( )y y    .  

Hence, the decision rule follows:  

For close objects ( , ) 0     , close decisions are to be made  

ˆ ˆ( ) ( )y y               in the problem of pattern recognition 1{ ,..., }my y   

ˆ ˆ( ) ( )y y               in the problem of regression estimation    
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Dipole in a metric space  
The metric space of real-world objects:   ,                ( , )     – the metric  
A dipole in the metric space – an ordered pair: 1 1,     

A simplest instantiation of the compactness hypothesis  
Membership of an arbitrary object  in one of two classes  

 1 1

1 1

  1 ( , ) ( , ),
ˆ( )

1 ( , ) ( , ).

if
y

if




      
 

       
 

How should the dipole be chosen?  

There are too few elements in the set of objects  . 
Besides, only a finite training set of objects is accessible to 

the observer  , 1,...,j j N   

A more “delicate” realization of the compactness hypothesis  
in a dense hull of the initially sparse metric space  

A hypothetical dense space, in which the set of real-world objects is subset of, maybe, 
isolated elements: . The dipole is to be chosen in this dense hull.  

1 1,  ,   1 1 1 1( , ) : ( , ) ( , )             – metric “hyperplane” in    

1 1 1 1( , ) ( , )        – projection of  onto the “hyperplane” in    
Score function: sign-dependent 
distance of the point from the 
“hyperplane” in    

 1 1
1 1

1 1

  ( , ) ( , ) ( , ),
( | , )

( , ) ( , ) ( , ).

if
d

if





         
   

         
 

1  

1  

  

1 1( , )   

1 1( | , )d     

 

 

This is an analog of the linear approach to dependence 
estimation:  
All the decisions on the hidden characteristic y  of a real-
world object  are to be made only from  
the sign-dependent distance 1 1( | , )d    . 
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 1 1
1 1

1 1
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( | , )
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if
d

if





         
   

         
 

1  

1  

  

1 1( , )   

1 1( | , )d     

 

 

Classification:  1 1

1 1

( )  1 ( | , ) 0,
ˆ( )

1 ( | , ) .( ) 0

if d b
y

if d b




    
 

     
 

Regression: 1 1 ( )ˆ( ) ( | , )y a d b       
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Hinge functions: A bridge to particular problems  

of dependence estimation  

0  d  y  

 

 

 ( , ) ln 1 yadq y d e   

0  yd  

ln 2  

 

 

0,         
( , ) 11 ,

yd
q y d

yd yd

 
  


 

  0  yd  

  

1  max  

 

 
Linear regression with 

quadratic loss  

Two-class pattern recognition: 

logistic regression  

Two-class pattern recognition: 

maximum margin  

-----------------------------------------------------------------------------------------------------  

But first, the initially sparse metric space of real-world objects is to be embedded into a 

dense hull , in which the dipole could be continuously chosen.  

 

A way:  

Embedding an arbitrary metric space into a linear space.  

However, it will not be a proper metric space.  

The metric will be defined in it not for all pairs of elements. 

 

But the initial metric space will be embedded isometrically.  

 

2( , ) ( )q y d y d 
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An instrument of embedding a metric space into a linear space:  
Commonality of two elements of a metric space  

Metric space   with metric ( , )    :  

( , ) 0    , ( , ) 0      if     ;            ( , ) ( , )         ; 

( , ) ( , ) ( , )               – triangle inequality  

Let us choose an element of the metric space   as its “center”  

Two-argument commonality function ( , ):K
      

2 2 21
( , ) ( , ) ( , ) ( , )

2
K

                     

Аналог известного понятия:  

подобность произведения Громова 

(Gromov product similarity)  
Theorem 1. Properties of the commonality function:  

( , ) ( , )K K 
         – symmetry  

2( , ) ( , ) 0K         – non-negativity for       

| ( , ) | ( , ) ( , )K K K  
             – inequality of Cauchy-Bunyakowsky type  

( , ) ( , ) ( , ) ( , ) ( , )K K K K K   
                    – the rule of center translation  

2 ( , ) ( , ) ( , ) 2 ( , )K K K  
                    – return to the metric  

 

It resembles very much the inner product!  

But there are no linear operations as yet!?  
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Commonality matrix for a finite metric space  

Let us assume, for simplicity sake, that the set of real-world objects with metric ( , )     is finite 

M  ,   1{ ,..., }M   . 

( , ), , 1,...,i jK i j M 
     K  – the symmetric commonality matrix for some center    

,1 ,,..., N       eigen values are real numbers  

,1 ,0,..., 0p

p

 



    , , 1 ,0,..., 0p M

q

  



      for an arbitrary metric, the matrix may be not 

positive definite  

p q M    – signature of the commonality  

Theorem 2. The signature of matrix 
K  does not depend on the choice of the center in the 

metric space  .  

Thus, any metric on a finite metric space M   is characterized by its signature p q M  .  

Definition. Metric is said to be proto-Euclidean one, if for any subset of objects 

1{ ,..., }N   matrix 2 ( , ), , 1,...,N j l j l N      P  is conditionally positive semidefinite: 

0T

N c P c ,  
1

0
NT

jj
c


 1 c .  

Theorem 3. The signature of a proto-Euclidean metric , 0p M q  . 

In other words, the commonality matrix of a finite metric space with a proto-Euclidean metric 
(finite proto-Euclidean metric space) is positive semidefinite for any choice of the center.  
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Indefinite inner product  
and pseudo-Euclidean linear space  

Let metric ( , )     on the set of objects | | M   be of signature p q M  .  

Let the following two-argument real-valued function be defined over the entire linear space M :  

,

                                        

( , ) :T M M

p q

signature depends only on the metric

K      x x x J x                      , ( )
p p p q

p q
q p q q

M M
 

 

 
   

I 0
J

0 I
  

Properties:  

Symmetricity ( , ) ( , )K K   x x x x  

Bilineariry ( , ) ( , ) ( , )K c c c K c K            x x x x x x x  

The property of non-negativity when  
the arguments coincide is absent 

( , ) 0K x x  for some Mx   

,( , ) ( ) 0
p p p qT T T T T

p q
q p q q

K
 

 

  
         

I 0 u
x x x J x u v u u v v

0 I v
 if T Tu u v v   

This is no inner product!  
Such a function is said to be indefinite inner product,  
and the linear space M  – pseudo-Euclidean linear space.  

2 

A finite-dimensional linear apace with indefinite inner product is called the Krein space.  

Mark Krein (1907-1989),  
Professor of Odessa Civil-Engineering Institute.  
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Vector length and distance between vectors  

in the pseudo-Euclidean linear space  
The pseudo-Euclidean linear space is neither normed (not all elements have norm) nor 
metric (metric is defined not for all pairs of elements).  
 
Nevertheless, it is possible to isometrically embed an arbitrary finite metric space of 
signature p q M   into a pseudo-Euclidean linear space of the same signature.  
 

Isometric embedding of an arbitrary metric space  
into a pseudo-Euclidean linear space   

 

Let 
1{ ,..., }M    be a finite metric space with metric ( , )    ,  

p q M   be its signature, and  be an arbitrary element assigned as the center.  
 

Theorem 4. There exist M  real-valued vectors 
,

M

j x , 1,...,j N , in the pseudo-Euclidean 

linear space of signature p q M  , for which are defined:  
 

the norm 
1 2

, , , ,

0

( , ) ( ) ( , )T

j j p q j jr   



    x 0 x J x  
distance to the zero point  

the metric 
1 2

, , , , , , ,

0

( , ) ( ) ( ) ( , )[ ]T

j l j l p q j l j lr      



      x x x x J x x  distance between pairs of 

vectors 
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Discriminant (score) functions in a pseudo-Euclidean linear space  
Discriminant dipole:  
An ordered pair of vectors 1 1< , > M M

    ,     1 1, M

    – the nodes of the dipole. 
In what follows, we shall consider only dipoles, for which the metric distance between the 
nodes is defined, i.e., the squared distance between the nodes is positive  

2

1 1 1 1 1 1( , ) ( ) ( ) 0T

pr      J       

The axis defined by a dipole:  

 1 1: (1 ) ,M M M

c c c c c      x x    

 

1 1
ˆ( , )x    – проекция вектора 

Mx  на ось,  
определяемую диполем  
 
Теорема 5. Если 2

1 1( , ) 0r    , то 2

1 1( | , ) 0d  x    для 
любого вектора  

Mx , и с учетом знака  
2 2

1 1
1 1 1 12

1 1

( , ) ( , )1
( | , ) ( , )

2 ( , )

r r
d r

r


 






x x
x

 
   

 
. 

 
Параметрическое семейство дискриминантных функций:  

1 1

0
( | , ) =0

0

,
,

.
d

положительная часть
нейтральная часть
отрицательная часть



 


 

x    

 

 
1  

 1   0c   

 1c   

 
M

 

 
 

 
  

класс 1  

класс 1   
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Discriminant functions in a pseudo-Euclidean linear space  
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1 1 1 1 1 1( , ) ( ) ( ) 0T

pr      J       

The axis defined by a dipole:  
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1 1
ˆ( , )x    – projection of a vector 
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x x
x
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1 1
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( | , ) =0

0
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,

.
d

положительная часть
нейтральная часть
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x    

 

 
1  

 1  

 x  

 
1 1

ˆ( , )x     
M

 

 
 

 
  

класс 1  

класс 1   
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Discriminant functions in a pseudo-Euclidean linear space  
Discriminant dipole:  
An ordered pair of vectors 1 1< , > M M
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    – the nodes of the dipole. 
In what follows, we shall consider only dipoles, for which the metric distance between the 
nodes is defined, i.e., the squared distance between the nodes is positive  

2

1 1 1 1 1 1( , ) ( ) ( ) 0T
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The axis defined by a dipole:  

 1 1: (1 ) ,M M M
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1 1
ˆ( , )x    – projection of a vector 

Mx  on the axis  
defined by the dipole 
 
Theorem 5. If 2

1 1( , ) 0r     then 2

1 1( | , ) 0d  x    for  
any vector  

Mx , and, with respect to the sign  

 2 2

1 1 1 1

1 1

1 1
( | , ) ( , ) ( , )

2 ( , )
d r r

r
 



 x x x   
 

. 

 
Параметрическое семейство дискриминантных функций:  

1 1

0
( | , ) =0

0

,
,

.
d

положительная часть
нейтральная часть
отрицательная часть



 


 

x    

 

 
1  

 1  

 x  

 
1 1

ˆ( , )x     
M

 

1 1( | , )d x    

with respect  
to the sign 

 1/2  

 
 

 
  

класс 1  

класс 1   
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Discriminant functions in a pseudo-Euclidean linear space 
Discriminant dipole:  
An ordered pair of vectors 1 1< , > M M

    ,     1 1, M

    – the nodes of the dipole. 
In what follows, we shall consider only dipoles, for which the metric distance between the 
nodes is defined, i.e., the squared distance between the nodes is positive  

2

1 1 1 1 1 1( , ) ( ) ( ) 0T

pr      J       

The axis defined by a dipole:  

 1 1: (1 ) ,M M M

c c c c c      x x    

 

1 1
ˆ( , )x    – projection of a vector 

Mx  on the axis  
defined by the dipole 
 
Theorem 5. If 2

1 1( , ) 0r     then 2

1 1( | , ) 0d  x    for  
any vector  

Mx , and, with respect to the sign  

 2 2

1 1 1 1

1 1

1 1
( | , ) ( , ) ( , )

2 ( , )
d r r

r
 



 x x x   
 

. 

 
Parametric family of discriminant functions:  

1 1

0
( | , ) =0

0

,
,
.

the
d the

the

positive part
neutral part
negative part



 


 

x    

 

 
1  

 1  

 x  

 
1/2  

 
1 1

ˆ( , )x    

1 1( | , )d x    

with respect  
to the sign 
 

 
M

 

 
 

 

class 1  

class 1   
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Training:  Choice of the discriminant dipole  
A training set in the metric space of real-world objects :  

 ( , ), 1,...,j jy j N  ,     distances ( , ), , 1,...,j l j l N      ,     classes ( )j jy y  .  

The center  + a real-world object      M0  + vector 
,

M

 x   
(in the pseudo-Euclidean space).  

The training process boils down to the choice of the dipole 1 1< , > M M

    :  

We shall consider the dipole’s nodes as linear (affine) combinations of the vectors 

1, ,{ ,..., }
N   x x , into which the objects of the training set are mapped:  

 
1 1, , 1,1 =1

1 1, , 1,1 =1

= , =1,

= , =1,

j

j

N N

j jj j

N N

j jj j

c c

c c

    

 

 

 

x

x




   

1, 1,j j ja c c  ,   
1

0
N

jj
a


 .   

Scaled Score function:                            2 2

1 1 1 1

1 1

1 1
( | , ) ( , ) ( , )

2 ( , )
d r r

r
 



 x x x   
 

 

Theorem 6: For any real-world object , any training set  , 1,...,j j N   , and any 

 : 

 2 2 2

1 , 1 ,

=1

( , ) ( , ) ( , )
N

j l j

l

r r a b         x x  ,  2 2

1 1

=1 =1

1
( , ) ( , )

2

N N

j l j l

j l

r a a      .  
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1, ,{ ,..., }
N   x x , into which the objects of the training set are mapped:  

 
1 1, , 1,1 =1

1 1, , 1,1 =1

= , =1,

= , =1,

j

j

N N

j jj j

N N

j jj j

c c

c c

    

 

 

 

x

x




   

1, 1,j j ja c c  ,   
1

0
N

jj
a


 .   

 Scaled score function:            2 2

1 1 1 1 1 1

1
( , ) ( | , ) ( , ) ( , )

2
r d r r   x x x       

For any real-world object , any training set  , 1,...,j j N   , and any  : 

 2 2 2

1 , 1 ,

=1

( , ) ( , ) ( , )
N

l l

l

r r a b         x x  ,  

 2 2

1 1

=1 =1

1
( , ) ( , )

2

N N

j l j l

j l

r a a      .  
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The general training problem  
Training set:  ( , ), 1,...,j jy j N  ,   ( , ), , 1,...,j l j l N      

Unified items  
of the training 
criterion  

Score function  2

1 =1
( | ,..., , ) ( , )

N

N j jj
d a a b a b       

Regularization 
function:  
squared dipole length 

 2

=1 =1 =1
( , ) 0, 0

N N N

j l j l lj l l
a a a         

The only 
problem-specific 
item  

Hinge function  1 1, ( | ,..., , ) ( , , ,..., , )N Nq y d a a b q y a a b    

The unified training criterion 

 2

1 1=1 =1 1 1
( , ) ( , , ,..., , ) min( ,..., , ), 0.

N N N N

j l j l j j N n lj l j l
a a C q y a a b a a b a

 
            

Particular versions of the problem-specific hinge function  

Regression estimation    
2

2

1 =1
( , )

N N

j l lj l
y a b


       

Logistic regression    2

1 =1
ln 1 exp ( , )

N N

l lj l
y a b



      
     

Maximum margin    2

1 =1
max 0, 1 ( , )

N N

j l lj l
y a b


       

All the particular hinge-function summands are convex.  
But the unified regularization term may be nonconvex in the case of an arbitrary metric.  
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criterion  

Score function  2

1 =1
( | ,..., , ) ( , )

N

N j jj
d a a b a b       

Regularization 
function:  
squared dipole length 

 2

=1 =1 =1
( , ) 0, 0

N N N

j l j l lj l l
a a a        

The only 
problem-specific 
item  

Hinge function  1 1, ( | ,..., , ) ( , , ,..., , )N Nq y d a a b q y a a b    

The unified training criterion 

 2

1 1=1 =1 1 1
( , ) ( , , ,..., , ) min( ,..., , ), 0.

N N N N

j l j l j j N n lj l j l
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j l lj l
y a b


       

Logistic regression    2

1 =1
ln 1 exp ( , )

N N
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Nonconvex maximum margin classifier  
The training criterion  

 
 

2

1 1=1 =1 =1

2

=1

( , ) min( ,..., , , ,..., ),

( , ) 1 , 0, =1,..., .

N N N

j l j l j N Nj l j

N

j j l l j jl

a a C a a b

y a b j N

        


        

  


 

Restriction  

=1
= 0

N

jj
a   

is met automatically.  

In the general case, this is a nonconvex quadratic programming problem.  

Function  2

=1 =1
( , )

N N

j l j lj l
a a     under equality restriction 

=1
= 0

N

jj
a  is convex only  

for a proto-Euclidean metric. 

The necessary condition of the minimum:   The dual problem  

 2

1=1 =1 =1

=1

(1 4) ( , ) max( ,..., ),

= 0, 0 , 1,..., .

N N N

j j l j l j l Nj j l
N

j j jj

y y

y C j N

          


  

  


  

 
 

 

2

:0 : 0 :

=1

:0

(1/2) ( , )
= (1 2) , = 0 , = ,

j l j

j

j j l l l jN j C l j C

j j j jj
jj C

y C y
a y a b

     

 

     




  



  

For an arbitrary metric, the solution of the non-concave dual problem may result in the 
negative value of the squared maximum margin:  

  2 2

=1 =1
1 = (1 2) ( , ) 0

N N

j l j l j lj l
y y         .   
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Nonconvex maximum margin classifier  
The training criterion  

 
 

2

1 1=1 =1 =1

2

=1

( , ) min( ,..., , , ,..., ),

( , ) 1 , 0, =1,..., .

N N N

j l j l j N Nj l j

N

j j l l j jl

a a C a a b

y a b j N

        


        

  


 

Restriction  

=1
= 0

N

jj
a   

is met automatically.  

In the general case, this is a nonconvex quadratic programming problem.  

Function  2

=1 =1
( , )

N N

j l j lj l
a a     under equality restriction 

=1
= 0

N

jj
a  is convex only  

for a proto-Euclidean metric. 

The necessary condition of the minimum:   The dual problem  

 2

1=1 =1 =1

=1

(1 4) ( , ) max( ,..., ),

= 0, 0 , 1,..., .

N N N

j j l j l j l Nj j l
N

j j jj

y y

y C j N

          


  

  


  

 
 

 

2

:0 : 0 :

=1

:0

(1/2) ( , )
= (1 2) , = 0 , = ,

j l j

j

j j l l l jN j C l j C

j j j jj
jj C

y C y
a y a b

     

 

     




  



  

In this case, the squared maximum margin remains always positive for an arbitrary metric: 
the solution of the non-concave dual problem may result in the negative value of:  

  2 2

=1 =1
1 = (1 2) ( , ) 0

N N

j l j l j lj l
y y        .   

 2

=1 =1

quadratically constrained
quadratic optimization

( , ) 0
N N

j l j l j lj l
y y           
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Decision rule (score function) in an arbitrary metric space  
The equivalent form of the discriminant function, which is completely determined by 1N  
real numbers 1( ,..., , )Na a b :  

 

2

1 1

2

=1 =1 =1

1
( | ,..., , ) ( , ) 0,

2

1
= 0, ( , ) 0.

2

( )N

N j jj

N N N

j j l j lj j l

d a a b a b

a a a



 
      
  

   



  

 

This is a linear decision rule in 

the pseudo-Euclidean space 

spanned over the given metric 

space of real-world objects 

Eliminating the difference between linear and nonlinear decision rules 

in a pseudo-Euclidean space  
Despite the fact that neither a metric space nor its pseudo-Euclidean embedding do not lend 
themselves to easy geometrical interpretation, we can conventionally demonstrate the 
essence of this boundary in an appropriate Euclidean space:  

1  

j  

1jy   

1jy   

1  

 

 

Linearly separable classes 

  

 

Way-out: An extension of the well-known kernel-based approac linear spaces onto metric 
spaces.  

new object 

Parameters to be estimated 

new object 

objects of the training set 
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Decision rule in an arbitrary metric space  
The equivalent form of the discriminant function, which is completely determined by 1N  
real numbers 1( ,..., , )Na a b :  

 

2

1 1

2

=1 =1 =1

1
( | ,..., , ) ( , ) 0,

2

1
= 0, ( , ) 0.

2

( )N

N j jj

N N N

j j l j lj j l

d a a b a b

a a a



 
      
  

   



  

 

This is a linear decision rule in 

the pseudo-Euclidean space 

spanned over the given metric 

space of real-world objects 

Eliminating the difference between linear and nonlinear decision rules 

in a pseudo-Euclidean space  
Despite the fact that neither a metric space nor its pseudo-Euclidean embedding do not lend 
themselves to easy geometrical interpretation, we can conventionally demonstrate the 
essence of this boundary in an appropriate Euclidean space:  
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Decision rule in an arbitrary metric space  
The equivalent form of the discriminant function, which is completely determined by 1N  
real numbers 1( ,..., , )Na a b :  

 

2

1 1

2

=1 =1 =1

1
( | ,..., , ) ( , ) 0,

2

1
= 0, ( , ) 0.

2

( )N

N j jj

N N N

j j l j lj j l

d a a b a b

a a a



 
      
  

   



  

 

This is a linear decision rule in 

the pseudo-Euclidean space 

spanned over the given metric 

space of real-world objects 

Eliminating the difference between linear and nonlinear decision rules 

in a pseudo-Euclidean space  
Despite the fact that neither a metric space nor its pseudo-Euclidean embedding do not lend 
themselves to easy geometrical interpretation, we can conventionally demonstrate the 
essence of this boundary in an appropriate Euclidean space:  

1  

j  

1jy   

1jy   

1  

 

 

Linearly separable classes 1  

j  

1jy   

1jy   

1  

 

 

Linearly inseparable classes  

An urgent desire:  

to eliminate the difference 
between separable and 
inseparable clases  

Way-out: An extension of the well-known kernel-based approac linear spaces onto metric 
spaces.  

new object 

Parameters to be estimated 

new object 

objects of the training set 



 23 

Decision rule in an arbitrary metric space  
The equivalent form of the discriminant function, which is completely determined by 1N  
real numbers 1( ,..., , )Na a b :  

 

2

1 1

2

=1 =1 =1

1
( | ,..., , ) ( , ) 0,

2

1
= 0, ( , ) 0.

2

( )N

N j jj

N N N

j j l j lj j l

d a a b a b

a a a



 
      
  

   



  

 

This is a linear decision rule in 

the pseudo-Euclidean space 

spanned over the given metric 

space of real-world objects 

Eliminating the difference between linear and nonlinear decision rules 

in a pseudo-Euclidean space  
Despite the fact that neither a metric space nor its pseudo-Euclidean embedding do not lend 
themselves to easy geometrical interpretation, we can conventionally demonstrate the 
essence of this boundary in an appropriate Euclidean space:  

1  

j  

1jy   

1jy   

1  

 

 

Linearly separable classes 1  

j  

1jy   

1jy   

1  

 

 

Linearly inseparable classes  

An urgent desire:  

to eliminate the difference 
between separable and 
inseparable classes  

Way-out: An extension of the well-known kernel-based approac linear spaces onto metric 
spaces.  

new object 

Parameters to be estimated 

new object 

objects of the training set 



 24 

Decision rule in an arbitrary metric space  
The equivalent form of the discriminant function, which is completely determined by 1N  
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Linearly inseparable classes  

An urgent desire:  

to eliminate the difference 
between separable and 
inseparable classes  

Way-out: An extension of the well-known notion of potential functions  
from finite-dimensional linear spaces onto metric spaces.  
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new object 
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Decision rule in an arbitrary metric space  
The equivalent form of the discriminant function, which is completely determined by 1N  
real numbers 1( ,..., , )Na a b :  
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An urgent desire:  

to eliminate the difference 
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M. Aizerman, E. Braverman, L. Rozonoer. Theoretical foundations of the potential function 
method in pattern recognition learning. Automation and Remote Control, 1964, Vol. 25.  
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Potential function (kernel) in a finite-dimensional linear space  
 

The initial inner product:  ( , ) TK    x x x x ,   , n x x   

The initial Euclidean metric:   
1 21 2

( , ) ( , ) ( , ) 2 ( , ) ( ) ( )TK K K                   x x x x x x x x x x x x  

Hilbert-space embedding –  

a new inner product:  
 2( , ) exp ( , )K     x x x x  – radial potential function  

The new metric  

in the Hilbert space:   

1 2

1 2
2

( , ) ( , | ) ( , ) 2 ( , )

                                                 2 1 exp ( , )

K K K              
   
 

x x x x x x x x

x x
  

However:  ( , ) 0  x x  when 0   

Normalization:    
1 2

21
( , ) 1 exp ( , )       

 
x x x x   

 

The kernel trick:  

A linear function in the Hilbert space will produce a nonlinear one in the original space.  

 

The idea: To apply such a transformation to an arbitrary metric.  
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Metric decision functions of growing complexity  

The separating ability depends on the 
accepted metric ( , )      

 2

1 1

=1

( | ,..., , ) ( , ) 0,

= 0

N

N j jj
N

jj

d a a b a b

a


     


 

 

A parametric family of metric transformations, which 
guarantees improving the separating ability of the initial 
metric (family of saturable metrics):  

 
1 2

21
( , | ) 1 exp ( , )            

 
  

 

 

Theorem 7. If ( , )     is a metric on   then 
( , | )      is a metric, too, with any value of the 

parameter 0 , and ( , | ) ( , )           when 0 . 
 

Theorem 8.   Any training set  ( , 1), 1,...,j jy j N     with any metric ( , )     is 

separable in the metric space ( , | )      if the parameter 0  is large enough.  

The choice of the metric transformation parameter   is analogous to the choice of the 
parameter of a radial potential function in a finite-dimensional feature space:  

 

( | )     

0,01    

0    

   

1
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Metric decision functions of growing complexity. Illustration 
 
Separable case: 
 

 

Non-Separable case: 
   Using of metric transformations 
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Metric decision functions of growing complexity. Illustration 

Separable case: 
 

 

 

Non-Separable case: 
   Using of metric transformations 
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Thank you for your attention! 
 

 

 

 

 

 


