
Problem 1: extreme rays of the copositive cone C6

Motivation

Copositive matrices appear to have been introduced in 1952 by Motzkin [45]. A real symmetric n× n matrix A
is called copositive if xTAx ≥ 0 for all x ∈ Rn

+. The set of copositive matrices forms a convex cone, the copositive
cone Cn.

The matrix cone Cn is of interest for optimization, as various difficult non-convex optimization problems
can be reformulated as conic programs over the copositive cone, so-called copositive programs. Among these
are combinatorial problems such as the bandwidth problem [49], graph partitioning [50], computing the sta-
bility number [21], clique number [57], and chromatic number [32] of graphs, and the quadratic assignment
problem [51]. Copositive formulations have been derived for quadratic programming problems [52, 12, 9] and
mixed-integer programs [20]. The connection of the copositive cone with sufficient optimality conditions for
quadratic programming, i.e., the problem of minimizing a quadratic function under linear constraints, has been
recognized already in the 70s [40, Theorem 3.2.3]. For quadratically constrained quadratic programming prob-
lems with additional linear constraints copositive relaxations are tighter than standard Lagrangian semi-definite
relaxations [11]. In [44, 42, 19, 8] copositive matrices are used for determining Lyapunov functions for switched
linear dynamical systems with state confined to the positive orthant or, more generally, to a polyhedral cone.
More applications of copositive programming can be found in the surveys [30, 10].

Verifying copositivity of a given matrix is a co-NP-complete problem [46]. Likewise, verifying whether a given
linear hyperplane in the space Sn of n×n real symmetric matrices is supporting to Cn at the zero matrix is NP-
hard [28]. This is not surprising given the extraordinary descriptive power of copositive programs. Therefore
much research has been focussed on finding tractable approximations of the copositive cone, in particular,
semi-definite approximations.

The commonest approximation of the cone Cn is that by the sum of the cone Sn+ of positive semi-definite
matrices and the cone Nn of element-wise nonnegative symmetric matrices. In [40] the matrices in this sum
are called stochastically copositive. It is a classical result by Diananda [22, Theorem 2] that for n ≤ 4 the
relation Cn = Sn+ +Nn holds, i.e., copositivity and stochastic copositivity are equivalent. In general, stochastic
copositivity merely implies copositivity, and Sn+ + Nn ⊂ Cn. A. Horn showed that for n ≥ 5 this inclusion is
indeed strict [22, p.25]. Matrices which are copositive but not stochastically copositive are called exceptional, a
term that has been coined in [41].

With the appearance of semi-definite programming more sophisticated approximations of Cn have been
elaborated in order to solve copositive programs. In [47] a hierarchy of inner semi-definite approximations for
Cn has been constructed, with the sum Sn+ + Nn being its simplest member. It is based on representing the
copositive cone as a cone of positive polynomials and applying sum of squares approximations. In [9] this
hierarchy has been relaxed to a hierarchy of polyhedral inner approximations. In [43] a hierarchy of outer
semi-definite approximations of Cn has been proposed based on moments involving the exponential measure on
Rn

+. All these hierarchies are asymptotically exact, i.e., the approximating cones tend to Cn as the order of the
approximation tends to infinity. The complexity of the approximating cones grows exponentially with the order,
however.

There exist also methods which deal directly with the data of the copositive program under consideration.
In [18, 19, 57] branch-and-bound methods based on a tree of polyhedral approximations of the copositive cone
have been proposed to check membership in this cone and to solve copositive programs. In [14] a local descent
method was proposed which works with the conic dual to the copositive program. In [13, 31] copositivity is
checked by a decomposition of a non-convex function as a difference of two convex functions.

For further surveys on copositive matrices see [38, 15], for a list of open problems see [6]. Closely related to
the copositive cone Cn is its dual C∗n, the completely positive cone. For surveys on completely positive matrices
see, e.g., [7, 15, 25].

Extreme copositive matrices

We focus on a particular topic, namely the extreme rays of Cn. An element x ∈ K is called an extremal element
of a regular convex cone K if a decomposition x = x1 + x2 of x into elements x1, x2 ∈ K is only possible if
x1 = λx, x2 = (1 − λ)x for some λ ∈ [0, 1]. The set of positive multiples of an extremal element is called an
extreme ray of K. The set of extreme rays is an important characteristic of a convex cone. Its structure, first of
all its stratification into a union of manifolds of different dimension, yields much information about the shape
of the cone. The extreme rays of a difficult cone are especially important if one wishes to check the tightness of
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inner convex approximations of the cone. Namely, an inner approximation is exact if and only if it contains all
extreme rays. Since the extreme rays of a cone determine the facets of its dual cone, they are also important
tools for the study of this dual cone [23, 56, 16, 17, 55, 54].

It is therefore not surprising that the extreme rays of Cn have been the subject already of many of the
first papers on copositive matrices. The extreme rays of Cn which are elements of the sum Sn+ + Nn have
been completely classified in [33]. Since Cn = Sn+ + Nn for n ≤ 4, this yields also a complete classification of
the extreme rays of Cn for n ≤ 4. The first exceptional extreme copositive form has been found by A. Horn,
according to [22, p.25]. This Horn form is a circulant 5 × 5 matrix with entries in {−1,+1}. In [3, Theorem
3.8] Baumert gave a procedure to construct an extreme ray of Cn+1 from an extreme ray of Cn, by duplicating
a row and the corresponding column of the original matrix. Starting with the Horn form, he was then able
to construct explicit exceptional extreme copositive matrices of every size n ≥ 5. Extreme copositive matrices
which cannot be obtained by this procedure have been called basic in [1].

In his thesis [2] and his paper [3] Baumert laid the foundation of a theory of extremal exceptional copositive
forms. He recognized the importance of the symmetry group Gn of the cone Cn, which consists of maps of the
form A 7→ PDADPT , where D is a positive definite diagonal matrix, and P ∈ Sn is a permutation matrix. The
elements of this symmetry group preserve the sum Sn+ +Nn and hence also the property of a copositive matrix
of being exceptional. Baumert showed that an exceptional extreme copositive matrix has positive diagonal
elements and hence can be scaled to a matrix with all diagonal elements equal to 1 by the action of Gn. By a
result from [33] he concluded that the off-diagonal elements of the scaled extremal exceptional matrix have all
to be in the interval [−1,+1].

The extremal exceptional matrices of Cn with elements in {−1,+1} have been classified completely in [4]
for n ≤ 7, where it has been shown that they can all be obtained from the Horn form by a group action and
the above-mentioned procedure of duplicating rows and columns, a result which does not hold anymore for
n = 8 [1]. For general n the extremal exceptional matrices with elements in {−1,+1} have been characterized
independently in [34, 1]. The extreme exceptional matrices in Cn with elements from the set {−1, 0,+1} have
been characterized in [39].

Since an exceptional copositive matrix cannot be a multiple of an element in the sum Sn+ +Nn, subtraction
of a non-zero such element from an extreme exceptional copositive matrix will lead to a matrix which is no more
copositive. This fact has early been recognized and led to a number of conditions on exceptional copositive
matrices which are weaker than extremality but more tractable. Baumert called a copositive matrix reduced if
one cannot subtract a non-zero nonnegative matrix from it without leaving the copositive cone [3], a condition
which has been initially introduced and put to use in [22]. Baumert refined this condition by requiring the
subtracted nonnegative matrix to be proportional to the extremal element Eij of Nn, where Eij is the symmetric
n × n matrix having a 1 at positions (i, j) and (j, i) and whose other elements all equal zero. He furnished a
necessary and sufficient condition on a copositive matrix to be reduced with respect to Eii [3, Theorem 3.4] and
conjectured a similar condition for reducedness with respect to Eij with i 6= j [4, Conjecture 4.1], refuted later
in [39] by a counterexample of order n = 7.

These conditions are expressed in terms of the presence or absence of zeros with certain properties. The
importance of the concept of zeros of a copositive matrix has been recognized already by Diananda who intro-
duced it in [22]. A nonzero vector u ∈ Rn

+ is called a zero of a copositive matrix A ∈ Cn if uTAu = 0. A zero
u of A is called isolated if in a neighbourhood of u there are no other zeros of A other than the multiples of
u. For a vector u ∈ Rn we define its support as suppu = {i ∈ {1, . . . , n} | ui 6= 0}, i.e., as the index set of the
non-zero elements of u. The possible supports of a nonnegative vector are in one-to-one correspondence with
the faces of the nonnegative orthant where this vector may be situated. However, a zero u of a copositive form
represents a global minimum of this form on the nonnegative orthant. Therefore the first and second order
optimality conditions at u are determined by its support. The set of supports of the zeros of a copositive matrix
is hence an informative combinatorial characteristic of this matrix which has attracted a lot of attention and
is an important mathematical tool in the analysis of copositive matrices and the copositive cone. We shall call
this set the support set of the copositive matrix in question. In [22, 33, 2, 3, 4] many necessary conditions on the
support set of an extremal or a reduced exceptional copositive matrix have been found, and on the other hand,
many conditions on the matrix have been established which are determined by its support set. Let us remark
that instead of the support as defined here, Baumert defined and used the equivalent notion of the pattern of a
zero. This notion turned out to be less convenient than that of the support, by which it has been superseded
nowadays. Properties of zeros and algorithms to find the zero set of copositive matrices have been recently
considered in [23] in application to a study of the faces of the copositive cone and its dual.

In [2, 4] Baumert discovered that the cone C5 possessed a family of exceptional extreme elements with a
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support set which is different from that of the Horn form, and gave an explicit matrix from this family. Key to
this finding was the introduction of the concept of maximal zero. A maximal zero u of a copositive matrix A is
a zero such that there does not exist another zero v of A such that suppu ⊂ supp v strictly.

After the paper [39] from the early 70s research on the extreme elements of the copositive cone came to a
halt for many years, until the revival which occurred in the current decade.

Recent results

The facial structure of the copositive cone, including the extreme rays, has been studied in [23].
In [36] a complete description of the extreme rays of the cone C5 was given. The strategy of the proof follows

the one outlined by Baumert [2], by replacing extremality by the weaker condition of reducedness with respect
to nonnegative matrices, which is easier to handle. However, two new ideas have been necessary for a successful
implementation.

The first one has been to introduce a trigonometric parametrization of the extreme matrices with all diagonal
elements equal to 1. As mentioned above, such matrices have their off-diagonal elements in the interval [−1,+1],
which can be parameterized by cosϕ with the angle ϕ running through the interval [0, π]. It turns out that the
family of extreme elements discovered by Baumert becomes affine in these angles and its range is delimited by
linear inequalities on the angles. As a result, the manifold of these exceptional extreme 5 × 5 matrices, which
have initially been called T -matrices in [36], can be described in a closed analytic form. The reason for this to
happen is the special structure of Cayleys nodal cubic surface which models the zero set of the determinant of
real symmetric 3× 3 matrices with diagonal elements equal to 1. This surface decomposes into a union of four
planes when undergoing the above trigonometric transformation. However, the optimality conditions associated
with the isolated zeros of the extreme forms of C5 in question force the 3× 3 principal submatrices of the forms
corresponding to the supports of the zeros to be singular. This will happen anytime a zero of a copositive form
has a support of cardinality less or equal to three. Thus the proposed trigonometric approach will lead to similar
results for any family of extreme rays of Cn whose zeros have supports with cardinality less or equal to three,
independently of the order n.

The second critical ingredient was to derive a necessary and sufficient condition on a copositive matrix to be
reduced with respect to the extreme element Eij of the nonnegative cone for i 6= j. Baumert has conjectured
such a condition in [4, Conjecture 4.1] and was able to prove that his families of extreme elements of C5 were
indeed exhaustive, assuming the conjecture. Namely, he provided a partial classification of the support sets
of matrices in C5 which are reduced with respect to the cone N 5, which would have been complete were the
conjecture true. This classification was completed in [26], by deriving the correct condition for reducedness with
respect to Eij . It turned out that this led to additional families of reduced matrices, but none of them were
extremal.

The study of the cone C5 was completed in [27], where it was shown that the second relaxation in Parrilos
hierarchy [47] was exact in describing the subset of 5 × 5 copositive matrices with all diagonal elements equal
to 1.

The classification of the extreme rays of C5 was based on a tedious classification of the possible support sets
of copositive 5× 5 matrices which are reduced with respect to the nonnegative cone N 5, initiated by Baumert
in [4] and completed in [26]. For the extension to copositive cones of order n > 5 a more systematic study of
support sets of exceptional extremal copositive matrices was necessary.

In [37] the concept of minimal zeros was introduced, as opposed to the maximal zeros studied by Baumert
in [2]. Here a zero u of a copositive form A is called minimal if for no other zero v of A, the support of v
is a strict subset of the support of u. In contrast to maximal zeros, or zeros in general, a minimal zero of a
copositive matrix is determined up to scaling by a positive constant only by its support and by the matrix itself.
Thus a copositive matrix can essentially have only a finite number of minimal zeros, which opens the way to a
combinatorial approach. The set of supports of all minimal zeros of a copositive matrix A is called the minimal
support set of A.

Also in [37] an extension of the concept of reducedness was presented. An exceptional extreme copositive
matrix A ∈ Cn is not only reduced with respect to the nonnegative cone, but for the same reasons must also
be reduced with respect to the positive semi-definite cone, i.e., it cannot be decomposed into a non-trivial sum
A = C + P , where C is copositive and P is positive semi-definite. This reducedness requirement leads to
additional conditions on the support set of the extremal matrix.

The main result of [37] is a set of necessary conditions on the minimal support set of an exceptional copositive
matrix which is reduced with respect to both Sn+ and Nn. When applied retrospectively to the cone C5, these
conditions are strong enough to single out exactly the two support sets which correspond to the two types of
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exceptional extreme rays of C5, namely the orbits of the Horn form and the T -matrices. For n = 6, the conditions
reduce the number of potential minimal support sets to 44, which makes the classification of the extreme rays
of C6 possible with a manageable effort. Surprisingly, for some applications the list of support sets itself suffices,
without explicit knowledge of the extreme rays [54].

As mentioned above, in previous work the condition of extremality was substituted by the weaker condition
of reducedness, because the latter is easier to handle. However, it is a trivial observation that extremality itself
can also be described by a reducedness condition. Namely, a copositive matrix is extremal if and only if one
cannot subtract another copositive matrix from it without leaving the copositive cone, except when this other
matrix is a multiple of the original matrix. The reducedness condition with respect to general convex cones was
studied in the paper [29].

The concept of reducedness is generalized in the following way. A copositive matrix A ∈ Cn is called reduced
with respect to another copositive matrix C if for every δ > 0, we have A − δC 6∈ Cn, and it is called reduced
with respect to a subset M⊂ Cn if it is irreducible with respect to all nonzero elements C ∈M.

The paper [29] has a strong convex analysis flavour. Its main result is a necessary and sufficient condition
on a pair (A,B), where A ∈ Cn and B ∈ Sn, for the existence of a scalar δ > 0 such that A + δB ∈ Cn. For
fixed A, the set of all such matrices B ∈ Sn forms a convex cone KA, which is referred to as the cone of feasible
directions [48]. This cone has been expressed in terms of the zeros of A and their supports.

The obtained description of the cone KA is a powerful tool. It allows to compute the minimal face of A,
see [5, 53] for further information on faces of a convex set or cone. In particular, a simple test of extremality of
A is obtained, which amounts to checking the rank of a certain matrix constructed from the minimal zeros of A.
The necessary and sufficient conditions for the reducedness of A with respect to a nonnegative matrix C ∈ Nn

or a positive semi-definite matrix C ∈ Sn+, which have been given in [26] and [37], respectively, are generalized
to the case of arbitrary matrices C ∈ Cn. The conditions in [26] and [37] follow as particular cases.

In [24] simpler criteria in the form of subsets of vectors for checking copositivity of a given matrix have been
described.

Problem description

Let us now summarize the elaborated approach to exceptional extremal copositive matrices. We divide our study
in two steps. First we look at the possible minimal support sets of extremal copositive matrices, constrained by
necessary conditions on the zeros. This step can be characterized as a qualitative analysis, because the main
object is of a combinatorial nature. Then we consider which extremal copositive matrices exist with a given
support set. This step is of a quantitative nature, and essentially boils down to solving underdetermined systems
of algebraic equations.

Both steps encounter difficulties when the order of the copositive matrices increases. One problem is the
exploding number of possible minimal support sets, and the other is the increasing complexity of the system of
equations. There are two regimes where these problems seem manageable. If the supports of the zeros are small,
of cardinality 2 or 3, then the trigonometric parametrization of the extremal matrices scaled such that their
diagonal elements equal 1 yields a linear system on the parameterizing angles, and the corresponding families
of extremal matrices can explicitly be written down. If the supports are large, then the corresponding system
of equations is rigid enough to prevent a too complex structure of the extremal matrices.

In the case of the cone C6 a complete classification of the extreme rays is still attainable. On the one hand,
with 44 the number of minimal support sets to study is moderate. The prospective minimal support sets are
listed in Table 1, up to permutations of the index set {1, . . . , 6}. On the other hand, every minimal support
set contains only zeros with support of size 2 or 3, which is the case of small supports, or of size n − 2 = 4,
which falls in the category of large supports. The treatment of each of the cases is hence expected to be feasible
without the encounter of major difficulties.

The proposed problem consists in determining all exceptional extremal copositive matrices with unit diagonal
for each of the listed minimal support sets. The cases can be solved independently of each other, some of them
have already been solved. For an up to date list of the solved cases including the solutions see [35].

We now sketch a path to the solution of the problem. For a given minimal support set, each minimal zero
imposes conditions on an extremal copositive matrix A with unit diagonal having this support set. Below we
list these conditions [26, 37]:

Zeros with support of size 2: If {i, j} is the support of a zero of A, then Aij = −1.
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No. suppVA
min No. suppVA

min

1 {1,2},{1,3},{1,4},{2,5},{3,6},{5,6} 23 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,4,5,6}
2 {1,2},{1,3},{1,4},{2,5},{3,6},{4,5,6} 24 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{3,4,6},{3,5,6}
3 {1,2},{1,3},{1,4},{2,5},{3,5,6},{4,5,6} 25 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{3,4,6},{4,5,6}
4 {1,2},{1,3},{1,4},{2,5,6},{3,5,6},{4,5,6} 26 {1,2,3},{1,2,4},{1,3,5},{1,4,5},{2,3,6},{2,4,6}
5 {1,2},{1,3},{2,4},{3,4,5},{1,5,6},{4,5,6} 27 {1,2,3},{1,2,4},{1,3,5},{1,4,5},{2,3,6},{3,4,6}
6 {1,2},{1,3},{1,4,5},{2,4,6},{3,4,6},{4,5,6} 28 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{3,4,5},{2,3,6}
7 {1,2},{1,3},{2,4,5},{3,4,5},{2,4,6},{3,4,6} 29 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{2,3,6},{2,5,6}
8 {1,2},{1,3},{2,4,5},{3,4,5},{2,4,6},{3,5,6} 30 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{3,4,6},{3,5,6}
9 {1,2},{3,4},{1,3,5},{2,4,6},{1,5,6},{4,5,6} 31 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{1,5,6},{2,5,6}
10 {1,2},{1,3,4},{1,3,5},{2,3,6},{3,4,6},{3,5,6} 32 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{1,5,6},{4,5,6}
11 {1,2},{1,3,4},{1,3,5},{1,4,6},{2,5,6},{3,5,6} 33 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{3,5,6},{4,5,6}
12 {1,2},{1,3,4},{1,3,5},{1,4,6},{3,5,6},{4,5,6} 34 {1,2,3},{1,2,4},{1,3,5},{2,4,6},{3,5,6},{4,5,6}
13 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{2,5,6} 35 {1,2,3,4},{1,2,3,5},{1,2,4,6},{1,3,5,6},{2,4,5,6},{3,4,5,6}
14 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{3,5,6} 36 {1,2},{1,3},{1,4},{2,5},{4,5},{3,6},{5,6}
15 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{4,5,6} 37 {1,2},{1,3,4},{1,3,5},{1,4,6},{2,5,6},{3,5,6},{4,5,6}
16 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,5,6},{4,5,6} 38 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{2,5,6},{3,5,6}
17 {1,2},{1,3,4},{2,3,5},{3,4,5},{2,4,6},{3,4,6} 39 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{2,5,6},{3,5,6}
18 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{1,5,6} 40 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{3,5,6},{4,5,6}
19 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{2,5,6} 41 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,4,6},{3,5,6}
20 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{3,5,6} 42 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,5,6},{4,5,6}
21 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,4,6} 43 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{2,5,6},{3,5,6},{4,5,6}
22 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,5,6} 44 {1,2,3},{1,2,4},{1,3,5},{1,4,5},{2,3,6},{2,4,6},{3,5,6},{4,5,6}

Table 1: Candidate minimal support sets of exceptional extreme matrices in C6

Minimal zeros with support of size 3: If {i, j, k} is the support of a minimal zero of A, then the

3 × 3 principal submatrix (Ars)r,s=i,j,k of A is given by

 1 − cosϕ1 − cosϕ2

− cosϕ1 1 − cosϕ3

− cosϕ2 − cosϕ3 1

 with positive angles

satisfying ϕ1 + ϕ2 + ϕ3 = 0.

Minimal zeros with support of size 4: If {i, j, k, l} is the support of a minimal zero of A, then the 4× 4
principal submatrix (Ars)r,s=i,j,k,l of A is positive semi-definite of rank 3 and with the 1-dimensional kernel
generated by a vector with positive entries.

First order optimality condition: Every zero u of A is a global minimum of the quadratic function
f(x) = xTAx over the nonnegative orthant. The first-order optimality condition then reads Au ≥ 0, where the
inequality is to be interpreted element-wise.

These conditions help to reduce the number of parameters entering A from the initial number of 15 in-
dependent off-diagonal elements to a few, defining an algebraic variety of the corresponding dimension. For
the matrices in this variety one has to check copositivity and extremality. The second task can be reduced to
checking feasibility of a linear system of equations. We have the following result [29, Theorem 17].

Let A ∈ Cn be a copositive matrix. Then A is extremal if and only if the following linear system of equations
on the real symmetric n × n matrix B has no solutions which are linearly independent from A: (Bu)i = 0 for
all minimal zeros u of A and for all indices i not in the support of Au.

Checking copositivity of a matrix is more subtle. The criteria in [24] can be helpful.

Once all exceptional extreme rays of C6 are found, one can proceed to constructing semi-definite descriptions
of the unit diagonal section of this cone, in the spirit of [27]. This opens the way to the design of algorithms for
solving conic optimization problems over this cone.
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