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Feature extraction

De�nition

Feature selection / Feature extraction

Feature extraction: �nd transformation of original data which
extracts most relevant information for machine learning task.

We will consider unsupervised dimensionality reduction methods,
which try to preserve geometrical properties of the data.
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Feature extraction

Applications of dimensionality reduction

Applications:

visualization in 2D or 3D

reduce operational costs (less memory, disc, CPU usage on
data transfer)

remove multi-collinearity to improve performance of
machine-learning models
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Feature extraction

Categorization

Supervision in dimensionality reduction:

supervised (such as Fisher's direction)

unsupervied

Mapping to reduced space:

linear

non-linear
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Feature extraction

Supervised case

We can �nd directions w1,w2, ...wD , projections on which best
separate classes.

Ways to �nd w :

Fisher's LDA
Any linear classi�cation 〈w , x〉 ≷ threshold gives valuable
supervised 1-D dimension w .

We can �nd an orthonormal basis of such directions.
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Feature extraction

Fisher's direction

Classi�cation between ω1 and ω2.
De�ne C1 = {i : xi ∈ ω1}, C2 = {i : xi ∈ ω2} and

m1 =
1

N1

∑
n∈C1

xn, m2 =
1

N1

∑
n∈C2

xn

µ1 = wTm1, µ2 = wTm2

De�ne projected within class variances:

s1 =
∑
n∈C1

(wT xn − wTm1)2, s2 =
∑
n∈C2

(wT xn − wTm2)2

Fisher's LDA criterion: (µ1−µ2)2
s21+s22

→ maxw
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Feature extraction

Fisher's direction - solution

The solution to this problem is

w ∝ Σ−1(m1 −m2)

where

Σ =
N1

N
Σ1+

N2

N
Σ2 =

N1

N

∑
n∈C1

(xn−m1)(xn−m1)T+
N2

N

∑
n∈C2

(xn−m2)(xn−m2)T

and N1 = |C1|, N2 = |C2|.

The same solution is obtained from Gaussian classi�cation with
equal covariance matrices:

p(x |y) = N(µy ,Σ).
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Feature extraction

Finding a basis of directions

Listing 1: Finding orthonormal basis of supervised directions

INPUT:

* training set (x1, y1), ...(xN , yN)

* algorithm, fitting w in linear classification
ŷ = sign[〈w , x〉 − threshold ]

ALGORITHM:
for d = 1, 2, ...D:

wd - classifier_direction[(x1, y1), ...(xN , yN)]
wd = wd

||wd ||
for n = 1, 2, ...N: # project to orthogonal supplement of w(d)

xn = xn − 〈xn,wd〉wd

OUTPUT: w1,w2, ...wD.
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Feature extraction

Degenerate case

On step d (x1, y1), ...(xN , yN) may become degenerate:

In such case we can select arbitrary wd from orthogonal
complement to w1, ...wd−1.

Constructive way to augment w1, ..wd−1 with orthogonal
complement:

We can use QR decomposition:

any A ∈ RDxM can be decomposed as A = QR, where
Q ∈ RDxD is orthogonal (QQT = QTQ = I ) and R ∈ RDxM is
upper-triangular.

for I ∈ RDxD set A = [w1, ...wd−1, I ]. From QR-decomposition
of A columns of Q will give required D directions.
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Principal component analysis
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Principal component analysis
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Principal component analysis

De�nition

De�nition of PCA

Linear transformation of data, using orthogonal matrix
A = [a1; a2; ...aD ] ∈ RDxD , ai ∈ RD :

ξ = AT x

We �nd orthogonal transform A yielding new variables ξi
having maximal variance values and mutually uncorrelated.

Properties:

Not invariant to translation:

Before applying PCA, we replace x ← x − µ, where
µ = 1

N

∑N
n=1 xn.

Further we assume that Ex = 0.

Not invariant to scaling:

need to standardize eah feature
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Principal component analysis

De�nition

Linear transformation properties

Linear transformation A = [a1; a2; ...aD ] ∈ RDxD , ai ∈ RD is
found:

ξ = AT x

ξi = aTi x = xTai

De�ne covariance matrix
cov [x ] = Σ = E[(x − Ex) (x − Ex)T ] = ExxT .
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Principal component analysis

De�nition

Linear transformation properties

Eξi = E
(
aTi x

)
= aTi Ex = 0

Covariance is equal:

cov [ξi , ξj ] = E
[
(ξi − Eξi ) (ξi − Eξi )

T
]

= E
[
ξiξ

T
j

]
= E

[(
aTi x

)(
aTj x

)T]
= aTi ExxTaj = aTi Σaj(1)

In particular, variance is equal:

Var [ξi ] = cov [ξi , ξi ] = aTi Σai (2)
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Principal component analysis

De�nition

Covariance matrix properties

Σ = cov [x ] ∈ RDxD is symmetric positive semide�nite matrix
(A < 0).

has λ1, λ2, ...λD eigenvalues, satisfying: λi ∈ R, λi ≥ 0.

Proof: A < 0=> xTAx ≥ 0∀x . In particular for eigenvector
v(Av = λv):

0 ≤ vTAv = λ vT v︸︷︷︸
>0

so λ ≥ 0.

for eigenvalues λi 6= λj eigenvectors vi and vj are orthogonal.

Proof: λjv
T
i vj = vT

i Avj =
(
vT
i Avj

)T
= vT

j Avi = λiv
T
j vi . Since

λi 6= λj this can hold only for vT
i vj = 0.

if eigenvalues are unique, corresponding eigenvectors are also
unique
always exists a set of orthogonal eigenvectors z1, z2, ...zD :
Σzi = λizi .

Later we will assume that λ1 ≥ λ2 ≥ ... ≥ λD ≥ 0. The process is
continued while λi > 0.
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Principal component analysis
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Principal component analysis

Derivation

Derivation: 1st component

Consider �rst component:

ξ1 = aT1 x

Optimization problem:{
Varξ1 → maxa

|a1|2 = aT1 a1 = 1

From (2):

Var [ξ1] = aT1 Σa1
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Principal component analysis

Derivation

Derivation: 1st component

Optimization problem is equivalent to �nding unconditional
stationary value of

L(a1, ν) = aT1 Σa1 − ν(aT1 a1 − 1)→ extra1,ν

∂L

∂a1
= 0 : 2Σa1 − 2νa1 = 0

a1 is selected from a set of eigenvectors of A. Since

Var [ξ1] = aT1 Σa1 = λia
T
1 a1 = λi

a1 is the eigenvector, corresponding to largest eigenvalue λi .
Eigenvector is not unique if λmax is a repeated root of
characteristic equation: |Σ− νI |=0.
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Principal component analysis

Derivation

Derivation: 2nd component

ξ2 = aT2 x
Var[ξ2] = aT2 Σa2 → maxa2
aT2 a2 = |a2|2 = 1

cov [ξ1, ξ2] = aT2 Σa1 = λ1a
T
2 a1 = 0

Lagrangian (assuming λ1 > 0)

L(a2, ν, η) = aT2 Σa2 − ν(aT2 a2 − 1)− ηaT2 a1 → extra2,ν,η

∂L

∂a2
= 0 : 2Σa2 − 2νa2 − ηa1 = 0 (3)

aT1
∂L

∂a2
= 2aT1 Σa2 − 2νaT1 a2 − ηaT1 a1 = 0
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Principal component analysis

Derivation

Derivation: 2nd component

From optimization constraints aT1 Σa2 = aT2 Σa1 = 0 and
aT1 a2 = aT2 a1 = 0, we obtain η = 0. Then from (3) we have that:

Σa2 = νa2

so a2 is eigenvector of Σ, and since we maximize

Var[ξ2] = aT2 Σa2 = λia
T
2 a2 = λi

this should be eigenvector, corresponding to second largest
eigenvalue λ2.
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Principal component analysis

Derivation

Derivation: k-th component

ξk = aTk x
Var [ξk ] = aTk Σak → maxak
aTk ak = |ak |2 = 1

cov [ξk , ξj ] = aTk Σaj = λja
T
k aj = 0, j = 1, 2, ...k − 1.

Lagrangian (assuming λj > 0, j = 1, 2, ...k − 1)

L(ak , ν, η) = aTk Σak − ν(aTk ak − 1)−
k−1∑
i=1

ηia
T
k ai → extra2,ν,η

∂L

∂ak
= 0 : 2Σak − 2νak −

k−1∑
i=1

ηiai = 0

∀j = 1, 2, ...k − 1 : aTj
∂L

∂a2
= 2aTj Σak − 2νaTj ak −

k−1∑
i=1

ηia
T
j ai = 0
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Principal component analysis

Derivation

Derivation: k-th component

Since aTj Σak = aTk Σaj = 0, aTj ai ∀j 6= i and aTj aj = 1 we obtain
ηj = 0. This holds for j = 1, 2, ...k − 1, so

Σak = νak

ak is then the eigenvector.
Variance of ξi is

Var [ξk ] = aTk Σak = λia
T
k ak = λi

so ak should be the eigenvector corresponding to the k-th largest
eigenvalue λk .
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Principal component analysis

Application details
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Principal component analysis

Application details

Number of components

Data visualization: 2 or 3 components.

Take most signi�cant components until their variance falls
sharply down:
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Principal component analysis

Application details

Number of components

Remind that A = [a1|a2|...|aD ], ATA = I , ξ = AT x .
Denote Sk = [ξ1, ξ2, ...ξk , 0, 0, ..., 0] ∈ RD

E[‖Sk‖2] = E[ξ21 + ξ22 + ...+ ξ2k ] =
k∑

i=1

var ξi =
k∑

i=1

λi

E[‖SD‖2] = E[ξT ξ] =

= ExTAAT x = E
[
xT x

]
= E[‖x‖2]

Select such k∗ that

E[‖Sk‖2]

E[‖x‖2]
=

E[‖Sk‖2]

E[‖SD‖2]
=

∑k
i=1 λi∑D
i=1 λi

> threshold

We may select k∗ to account for 90%, 95% or 99% of total
variance.
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Principal component analysis

Application details

Transformation ξ � x

Dependence between original and transformed features:

ξ = AT (x − µ), x = Aξ + µ,

where µ = 1
N

∑N
n=1 xn.

Taking �rst r components - Ar = [a1|a2|...|ar ], we get the image of
the reduced transformation:

ξr = AT
r (x − µ)

ξr will correspond to

xr = A

(
ξr
0

)
+ µ = Arξr + µ

xr = ArA
T
r (x − µ) + µ

ArA
T
r is projection matrix with rank r

(follows from the property rank
[
AAT

]
= rank

[
ATA

]
for any A).
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Principal component analysis

Application details

Properties of PCA

Depends on scaling of individual features.

Assumes that each feature has zero mean.

Covariance matrix replaced with sample-covariance.

Does not require distribution assumptions about x .
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Principal component analysis

Application details

PCA for visualization

Remark: here, as always, projections ξi are uncorrelated. But it
does not mean independence - we can still extract their valuable
interrelationship.
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Principal component analysis

Application details

Application - data �ltering

Local linear projection method:

X. Huo and Jihong Chen (2002). Local linear projection (LLP). First IEEE Workshop
on Genomic Signal Processing and Statistics (GENSIPS), Raleigh, NC, October.
http://www.gensips.gatech.edu/proceedings/.
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Principal component analysis

Application details

Example

Faces database:
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Principal component analysis

Application details

Eigenfaces

Eigenvectors are called eigenfaces. Projections on �rst several
eigenfaces describe most of face variability.
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Principal component analysis

Application details

Alternative de�nitions of PCA

1 Find line of best �t, plane of best �t, etc.

�t is the sum of squares of perpendicular distances.

2 Find line, plane, etc. preserving most of the variability of the
data.

variability is a sum of squared projections
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Principal component analysis

Application details

Example: line of best �t

In PCA sum of squared of perpendicular distances to line is
minimized.

What is the di�erence with least squares minimization in

regression?
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Principal component analysis

Application details

Best hyperplane �t

Subspace Lk or rank k best �ts points x1, x2, ...xD if sum of
squared distances of these points to this plane is maximized over all
planes of rank k .
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Principal component analysis

Application details

Best hyperplane �t

For point xi denote pi the projection on plane Lk and hi -
orthogonal component. Then ‖xi‖2 = ‖pi‖2 + ‖hi‖2.
For set of points:∑

i

‖xi‖2 =
∑
i

‖pi‖2 +
∑
i

‖hi‖2

Since sum of squares is constant, minimization of
∑

i ‖hi‖
2 is

equivalent to maximization of
∑

i ‖pi‖
2.
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Principal component analysis

Application details

Another view on PCA directions

k-th step optimization problem for ξk = aTk x :
Var [ξk ] = aTk Σak → maxak
aTk ak = |ak |2 = 1

cov [ξk , ξj ] = aTk Σaj = λja
T
k aj = 0, j = 1, 2, ...k − 1.

can be equivalently represented as:
‖Xak‖2 → maxak
‖ak‖ = 1

ak ⊥ a1, ak ⊥ a2, ...ak ⊥ ak−1 if k ≥ 2

(4)

since maximization of ‖Xak‖2 is equivalent to maximization of
1
N ‖Xak‖

2 = 1
N (Xak)T (Xak) = 1

N a
T
k X

TXak = aTk Σak .
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Principal component analysis

Application details

Property of PCA

Theorem 1

For 1 ≤ k ≤ r let Lr be the subspace spanned by a1, a2, ...ar . Then

for each k Lk is the best-�t k-dimensional subspace for X .

Proof: use induction. For r = 1 the statement is true by de�nition
since projection maximization is equivalent to distance
minimization.
Suppose theorem holds for r − 1. Let Lr be the plane of best-�t of
dimension with dim L = r . We can always choose a orthonormal
basis of Lr b1, b2, ...br so that{

‖br‖ = 1

br ⊥ a1, br ⊥ a2, ...br ⊥ ar−1
(5)

by setting br perpendicular to projections of a1, a2, ...ar−1 on Lr .

38/52



Dimensionality reduction - Victor Kitov

Principal component analysis

Application details

Property of PCA

Consider the sum of squared projections:

‖Xb1‖2 + ‖Xb2‖2 + ...+ ‖Xbr−1‖2 + ‖Xbr‖2

By induction proposition L[a1, a2, ...ar−1] is space of best �t of rank
r − 1 and L[b1, ...br−1] is some space of same rank, so sum of
squared projections on it is smaller:

‖Xb1‖2+‖Xb2‖2+...+‖Xbr−1‖2 ≤ ‖Xa1‖2+‖Xa2‖2+...+‖Xar−1‖2

and
‖Xbr‖2 ≤ ‖Xar‖2

since br by (5) satis�es constraints of optimization problem (4) and
ar is its optimal solution.
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SVD decomposition
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SVD decomposition

SVD decomosition

Every matrix X ∈ RNxD of rank R can be decomposed into the
product of three matrices:

X = UΣV T

where U ∈ RNxR , Σ ∈ RRxR , V T ∈ RRxD , and Σ =
diag{σ1, σ2, ...σR}, σ1 ≥ σ2 ≥ ... ≥ σR ≥ 0, UTU = I , V TV = I .
I ∈ RDxD denotes identity matrix.

41/52



Dimensionality reduction - Victor Kitov

SVD decomposition

Applications of SVD

For square matrix X :

U, V T represent rotations-projections, Σ represents scaling
(with projection and re�ection),
every square matrix may be represented as superposition of
rotation-projection, scaling and another rotation-projection.

For full rank X :
X−1 = VΣ−1UT ,

since XX−1 = UΣV TVΣ−1UT = I .
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SVD decomposition

Interpretation of SVD

For Xij let i denote objects and j denote properties.

U represents standardized coordinates of concepts

V T represents standardized concepts representations

Σ shows the magnitudes of presence of standardized concepts
in X .
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SVD decomposition

Example

T
e
rm

in
a
to
r

G
la
d
ia
to
r

R
a
m
b
o

T
it
a
n
ic

L
o
v
e
st
o
ry

A
w
a
lk

to
re
m
e
m
b
e
r

Andrew 4 5 5 0 0 0

John 4 4 5 0 0 0

Matthew 5 5 4 0 0 0

Anna 0 0 0 5 5 5

Maria 0 0 0 5 5 4

Jessika 0 0 0 4 5 4
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SVD decomposition

Example

U =



0. 0.6 −0.3 0. 0. −0.8
0. 0.5 −0.5 0. 0. 0.6
0. 0.6 0.8 0. 0. 0.2
0.6 0. 0. −0.8 −0.2 0.
0.6 0. 0. 0.2 0.8 0.
0.5 0. 0. 0.6 −0.6 0.


Σ = diag{

(
14. 13.7 1.2 0.6 0.6 0.5

)
}

V T =



0. 0. 0. 0.6 0.6 0.5
0.5 0.6 0.6 0. 0. 0.
0.5 0.3 −0.8 0. 0. 0.
0. 0. 0. −0.2 0.8 −0.6
−0. −0. −0. 0.8 −0.2 −0.6
0.6 −0.8 0.2 0. 0. 0.


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SVD decomposition

Example (excluded insigni�cant concepts)

U2 =



0. 0.6
0. 0.5
0. 0.6
0.6 0.
0.6 0.
0.5 0.


Σ2 = diag{

(
14. 13.7

)
}

V T
2 =

(
0. 0. 0. 0.6 0.6 0.5
0.5 0.6 0.6 0. 0. 0.

)
Concepts may be

patterns among movies (along j) - action movie / romantic movie
patterns among people (along i) - boys / girls

Dimensionality reduction case: patterns along j axis.
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SVD decomposition

Applications

Example: new movie rating by new person

x =
(
5 0 0 0 0 0

)
Dimensionality reduction: map x into concept space:

y = V T
2 x =

(
0 2.7

)
Recommendation system: map y back to original movies
space:

x̂ = yV T
2 =

(
1.5 1.6 1.6 0 0 0

)
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SVD decomposition

Fronebius norm

Fronebius norm of matrix X is ‖X‖F
df
=
√∑N

n=1

∑D
d=1 x

2
nd

Using properties ||X ||F = trXXT and trAB = trBA, we
obtain:

‖X‖F = tr[UΣV TVΣUT ] = tr[UΣ2UT ] =

= tr[Σ2UTU] = tr[Σ2] =
R∑

r=1

σ2r (6)
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SVD decomposition

Matrix approximation

Consider approximation Xk = UΣkV
T , where

Σk = diag{σ1, σ2, ...σk , 0, 0, ..., 0} ∈ RRxR .

Theorem 2

Xk is the best approximation of X retaining k concepts.

Proof: consider matrix Yk = UΣ′V T , where Σ′ is equal to Σ
except some R − k elements set to zero:
σ′i1 = σ′i2 = ... = σ′iR−k

= 0. Then, using (6)

‖X − Yk‖F =
∥∥∥U(Σ− Σ′)V T

∥∥∥
F

=
R−k∑
p=1

σ2ip ≤
R−k∑
p=1

σ2p = ‖X − Xk‖F

since σ1 ≥ σ2 ≥ ... ≥ σR ≥ 0.
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SVD decomposition

Matrix approximation

How many components to retain?

General case: Since

‖X − Xk‖F =
∥∥∥U(Σ− Σk)V T

∥∥∥
F

=
R∑

i=k+1

σ2i

a reasonable choice is k∗ such that

‖X − Xk∗‖F
‖X‖F

=

∑R
i=k∗+1 σ

2
i∑R

i=1 σ
2
i

≥ threshold

Visualization: 2 or 3 components.

Theorem 3

For any matrix Yk with rankYk = k : ‖X − Xk‖F ≤ ‖X − Yk‖F
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SVD decomposition

Finding U and V

Finding V

XTX =
(
UΣV T

)T
UΣV T = (VΣUT )UΣV T = VΣ2V T . It

follows that
XTXV = VΣ2V TV = VΣ2

So V consists of eigenvectors of XTX with corresponding
eignvalues σ21, σ

2
2, ...σ

2
R .

Finding U:

XXT = UΣV T
(
UΣV T

)T
= UΣV TVΣUT = UΣ2UT . So

XXTU = UΣ2UTU = UΣ2.

So U consists of eigenvectors of XXTwith corresponding
eigenvalues σ21, σ

2
2, ...σ

2
R .
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SVD decomposition

Comments

Denote the average X̄ ∈ RD : X̄j =
∑N

i=1 xij

Denote the n-th row of X be Xn ∈ RD : Xnj = xnj

For centered X sample covariance matrix Σ̂ equals:

Σ̂ =
1

N

N∑
n=1

(Xn − X̄ )(Xn − X̄ )T =
1

N

N∑
n=1

XnX
T
n

=
1

N
XTX

V consists of principal components since

V consists of eigenvectors of XTX ,
principal components are eignevectors of Σ̂ and
Σ̂ ∝ XTX .
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