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Feature extraction

Definition

Feature selection / Feature extraction
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(a) feature selector (b) feature extractor

Feature extraction: find transformation of original data which
extracts most relevant information for machine learning task.

We will consider unsupervised dimensionality reduction methods,

which try to preserve geometrical properties of the data.
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Feature extraction

Applications of dimensionality reduction

Applications:
@ visualization in 2D or 3D

@ reduce operational costs (less memory, disc, CPU usage on
data transfer)

e remove multi-collinearity to improve performance of
machine-learning models
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Feature extraction

Categorization

Supervision in dimensionality reduction:
@ supervised (such as Fisher's direction)
@ unsupervied

Mapping to reduced space:
@ linear

@ non-linear
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Feature extraction

Supervised case

@ We can find directions wq, ws, ...wp, projections on which best
separate classes.

o Ways to find w:

o Fisher's LDA
o Any linear classification (w, x) 2 threshold gives valuable
supervised 1-D dimension w.

@ We can find an orthonormal basis of such directions.
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Feature extraction

Fisher's direction

o Classification between w; and wy.
o Define GG ={i: x;€wi}, G={i:x €w} and

ml:Nilzxn’ mzzNilzxn

neC neCy
T T
H1 =W my, [H2 =W mp

@ Define projected within class variances:

51 = Z (WTXn — WTm1)2, Sy = Z(WTX,, — WTm2)2
neCy neC

(pa—p2)?

o Fisher's LDA criterion: e

— maxy
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Feature extraction

Fisher's direction - solution

The solution to this problem is
woc X (my — my)

where

Nie Ny Ny
Y= Tt T = > (x—m) (xp—m) —i——Z(X,, ma)(xn
neCy neC

and N1 = |C1‘, N2 = ‘CQ’

The same solution is obtained from Gaussian classification with
equal covariance matrices:

p(x|y) = N(py, 2).
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Feature extraction

Finding a basis of directions

Listing 1: Finding orthonormal basis of supervised directions

INPUT:
* training set (xi,y1),...(xn, ¥n)
* algorithm, fitting w in linear classification
y = sign[{w, x) — threshold)|

ALGORITHM:
for d=1,2,..D:
wg - classifier_direction[(xi,y1),...(xn, yn)]
Wqg = o
[wall
for n=1,2,..N:
Xn = Xn — <Xn7 Wd>Wd

OUTPUT: Wi, Wa,...Wp.
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Feature extraction

Degenerate case

@ On step d (x1,y1),...(xn, yn) may become degenerate:

@ In such case we can select arbitrary wy from orthogonal
complement to wy,...wy_1.

e Constructive way to augment wy,..wy_1 with orthogonal
complement:
o We can use QR decomposition:

o any A € RPM can be decomposed as A = QR, where
Q € RP*? is orthogonal (RR™ = Q" Q =1) and R € RPM is
upper-triangular

o for I € RP*P set A = [wy,...wy_1,/]. From QR-decomposition
of A columns of Q will give required D directions.
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Principal component analysis

Definition

@ Principal component analysis
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Principal component analysis

Definition

Definition of PCA

@ Linear transformation of data, using orthogonal matrix
A= [a1; ap; ...ap] € RPP, a; ¢ RP:

E=ATx

e We find orthogonal transform A yielding new variables ¢;
having maximal variance values and mutually uncorrelated.

@ Properties:
o Not invariant to translation:

o Before applying PCA, we replace x < x — u, where

1 N
= N Zn:l Xn.
o Further we assume that Ex = 0.

e Not invariant to scaling:

o need to standardize eah feature
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Principal component analysis

Definition

Linear transformation properties

@ Linear transformation A = [a;; a2;...ap| € RDD 5. e RP s
found:
E=ATx

0 &= a,-Tx =xTa;

@ Define covariance matrix
cov[x] = ¥ = E[(x — Ex) (x — Ex)"] = Exx".
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Principal component analysis

Definition

Linear transformation properties

o K¢, =E (aTx) =a/Ex=0

i

@ Covariance is equal:
covging] = E|(&—E) (& -EE)T| = E 6|

-
T T T T T
= E [(a,- x) <aj x) } =a; Exx'aj = a; X41)
@ In particular, variance is equal:

Var[€;] = cov[&;, &] = a] Ta; (2)

15/52



Dimensionality reduction - Victor Kitov

Principal component analysis

Definition

Covariance matrix properties

Y = cov[x] € RP*P is symmetric positive semidefinite matrix
(A=0).
@ has A1, Ao, ...\p eigenvalues, satisfying: \; € R, A\; > 0.

o Proof: A= 0=> xT Ax > 0Vx. In particular for eigenvector

v(Av = Av):
0<viAv=AvTv
~—~
>0
so A > 0.

o for eigenvalues \; # \; eigenvectors v; and v; are orthogonal.

o Proof: )\jv,-TvJ- = v,-TAvj = (v,-TAvj)T = vaAv,- = /\,-vav,-. Since
Ai # A; this can hold only for v."v; = 0.
o if eigenvalues are unique, corresponding eigenvectors are also
unique
@ always exists a set of orthogonal eigenvectors zi, z, ...zp:
ZZ,' = )\,'Z,'.
Later we will assume that A\; > A\» > ... > A\p > 0. The process is

continued while \; > 0.
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Principal component analysis

Derivation
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Principal component analysis

Derivation

Derivation: 1st component

Consider first component:
51 = ai’—X
Optimization problem:

Var&; — max,
T

|a1]? = af a1 = 1
From (2):

Var[é1] = af Xap
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Principal component analysis

Derivation

Derivation: 1st component

Optimization problem is equivalent to finding unconditional
stationary value of

L(a1,v) = airZal - u(alTal —1) — extra ,

%:O: 2¥ a1 —2va; =0
831

ay is selected from a set of eigenvectors of A. Since

Var[€1] = a] Zay = \jaj a1 = \;

a1 is the eigenvector, corresponding to largest eigenvalue ;.
Eigenvector is not unique if A\pax is a repeated root of
characteristic equation: |X — v/|=0.
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Principal component analysis

Derivation

Derivation: 2nd component

& =aj x

Var[&] = a] ap — max,,
ajay = o> =1
cov[&, &) = ag—Zal = Alag—al =0

Lagrangian (assuming A; > 0)

L(az,v,m) = azTZaz — u(a{ag —-1)— 7732Tal — extra, vy

oL
8732:0: 2232—2%92—7731:0 (3)
oL
alTa— = 2a/ Yay — 2val ap —naj a; =0
a
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Principal component analysis

Derivation

Derivation: 2nd component

From optimization constraints aj Ya, = aJ ¥a; = 0 and
al a2 = aJ a1 = 0, we obtain 7 = 0. Then from (3) we have that:

Ya, =vay
so ap is eigenvector of ¥, and since we maximize
Val‘[fz] = azTZaz = /\;32T32 = )\,’

this should be eigenvector, corresponding to second largest
eigenvalue \;.
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Principal component analysis

Derivation

Derivation: k-th component

& = a,z_x
Var[ék] = aZ—Zak — max,,
alak = lak]? =1
cov[é, &) = al Taj = NjaJaj =0, j=1,2,..k— 1
Lagrangian (assuming \; >0, j =1,2,..k — 1)

k—1
L(aw,v,n) = a Tax — v(a] ax — 1) — Zn;a[a,- — eXtrayun

i=1

oL k—1

aak =0: QZak — 2I/ak — 277,'3,' =0

i=1

oL k—1
Vi=12,..k—1: aJ-Ta‘9 = 2ajTZak — 21/ajTak — Zn;ajTa; =0
2
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Principal component analysis

Derivation

Derivation: k-th component

Since ajTZak =a/¥a; =0, ajTa,-Vj # i and aJ-TaJ- = 1 we obtain
nj = 0. This holds for j =1,2,...k — 1, so

Zak = Vag

ay is then the eigenvector.
Variance of &; is

Var[fk] = akTZak = )\;a,z—ak = /\;

so ay should be the eigenvector corresponding to the k-th largest
eigenvalue .
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Principal component analysis

Application details
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Principal component analysis
Application details

Number of components

o Data visualization: 2 or 3 components.

o Take most significant components until their variance falls
sharply down:
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Principal component analysis

Application details

Number of components

Remind that A = [a1|ap|...|ap], ATA=1, £ = ATx.
Denote S, = [51,62, .6k, 0,0, ...,0] eRP

k

k
E[|ScI’] =Bl + & + ...+ Gl =D var& =)\
=1 =1
E[|Sp|”] = E[¢7¢ =
= ExTAATx =E [x"x| = E[|x|?]

Select such k* that
B[S _ ElISYT _ S, A
E[IxI’]  E[ISol] 72\
We may select k* to account for 90%, 95% or 99% of total
variance.

> threshold
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Principal component analysis

Application details

Transformation £ 2 x

Dependence between original and transformed features:
E=AT(x—p), x=A¢ +p,

where = % ZnN:1 Xp-
Taking first r components - A, = [a1]az]...|a,], we get the image of
the reduced transformation:

&= AZ—(X — )

&, will correspond to
Xr:A< %r > +p=Ak +p

X = AA(x = p) + p
A,AT is projection matrix with rank r
(follows from the property rank [AAT] = rank [ATA] for any A).
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Principal component analysis

Application details

Properties of PCA

Depends on scaling of individual features.

@ Assumes that each feature has zero mean.

Covariance matrix replaced with sample-covariance.

Does not require distribution assumptions about x.
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Principal component analysis
Application details

PCA for visualization

original data space

PCA component space
—
B e e
Q)
i K
T
o gl o X
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H =
5
PO s
£
PC1

Remark: here, as always, projections &; are uncorrelated. But it

does not mean independence - we can still extract their valuable
interrelationship.
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Principal component analysis

Application details

Application - data filtering

Local linear projection method:

a Horizontal View a Horizontal View

o83 o

B

o o

X. Huo and Jihong Chen (2002). Local linear projection (LLP). First IEEE Workshop
on Genomic Signal Processing and Statistics (GENSIPS), Raleigh, NC, October.
http://www.gensips.gatech.edu/proceedings/.

30/52



Dimensionality reduction - Victor Kitov

Principal component analysis

Application details

Example

Faces database:
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Principal component analysis

Application details

Eigenfaces

Eigenvectors are called eigenfaces. Projections on first several
eigenfaces describe most of face variability.
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Principal component analysis

Application details

Alternative definitions of PCA

O Find line of best fit, plane of best fit, etc.
o fit is the sum of squares of perpendicular distances.

@ Find line, plane, etc. preserving most of the variability of the
data.

e variability is a sum of squared projections
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Principal component analysis

Application details

Example: line of best fit

@ In PCA sum of squared of perpendicular distances to line is
minimized.

o What is the difference with least squares minimization in
regression?
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Principal component analysis

Application details

Best hyperplane fit

Subspace Ly or rank k best fits points x1, x2, ...xp if sum of
squared distances of these points to this plane is maximized over all
planes of rank k.
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Principal component analysis

Application details

Best hyperplane fit

For point x; denote p; the projection on plane L, and h; -
orthogonal component. Then ||x;||> = ||pi||* + || hil|*.
For set of points:

Do Ikll? = el D Il
i i i

Since sum of squares is constant, minimization of >, 1hill? is
equivalent to maximization of ). l1pi |
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Principal component analysis

Application details

Another view on PCA directions

k-th step optimization problem for &, = aZ—x:

Var[&k] = aZ—Zak — max,,
alak = |ak]? =1

cov[ék, &) = al Taj = Njalaj =0, j=1,2,..k—1
can be equivalently represented as:

HXakH2 — maxa,
l|a]l =1 (4)
ax Laj,ar Lay,..ap Lag_1ifk>2

since maximization of || Xay||? is equivalent to maximization of
LiXakl? = L (Xax) " (Xax) = Lal X Xay = a] Zay.
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Principal component analysis

Application details

Property of PCA

For1l < k <r let L, be the subspace spanned by a1, as,...a,. Then
for each k Ly is the best-fit k-dimensional subspace for X.

Proof: use induction. For r =1 the statement is true by definition
since projection maximization is equivalent to distance
minimization.

Suppose theorem holds for r — 1. Let L, be the plane of best-fit of
dimension with dim L = r. We can always choose a orthonormal
basis of L, by, by, ...b, so that

[br]| =1
(5)
br 1 ai, br 1 an, ...br 1 dr—1

by setting b, perpendicular to projections of a1, as,...a,—1 on L,.
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Principal component analysis

Application details

Property of PCA

Consider the sum of squared projections:
IXby|? + ([ Xb2|[* + ... + [[Xbr—1 |1 + (I Xbr||?

By induction proposition L[ai, ap, ...a,—1] is space of best fit of rank
r—1and L[by,...b,_1] is some space of same rank, so sum of
squared projections on it is smaller:

1Xby | *+ 1| Xb2||*+.. 4[| Xbr—1|I* < || Xav |+ Xaz|*+...+ | Xar—1]|*

and
IXbe|* < || Xar ||

since b, by (5) satisfies constraints of optimization problem (4) and
a, is its optimal solution.
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SVD decomposition
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SVD decomposition

SVD decomosition

Every matrix X € R¥P of rank R can be decomposed into the
product of three matrices:

X =UxzvT

where U € RVR ¥ ¢ RRR T c RRD and ¥ =
diag{al,ag,...aR}, o1 > 092> ...> OR > 0, UTU = /, VTV =1.
| € RP*D denotes identity matrix.

- D ——» - R —»

- R —» - D) ——»
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SVD decomposition

Applications of SVD

For square matrix X:

o U, VT represent rotations-projections, ¥ represents scaling
(with projection and reflection),
every square matrix may be represented as superposition of
rotation-projection, scaling and another rotation-projection.

o For full rank X:
X t=vZtluT,

since XX 1= UzvTvI-lyT =1.
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SVD decomposition

Interpretation of SVD

- D ——» - R —»

- R — - D) —»

For Xj; let i denote objects and j denote properties.
@ U represents standardized coordinates of concepts
o VTrepresents standardized concepts representations

@ Y shows the magnitudes of presence of standardized concepts
in X.
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SVD decomposition

Example

o
2
S
Q
g
N g
1N AL
c| 2| oL | H | x
= _f_U Na] .= —
ElB|E|s|g|2

GhJ E v} 4 (o)
FlO I xlF|ag|<
Andrew | 4 | 5| 5| 0| 0|0
John | 4 | 4| 5|00 |0
Matthew | 5 | 5 |4 | 0| 0 |0
Anna | 0| 0| 0|5 |5 |5
Maria| 0| 0| 0| 5|5 |4
Jessika | 0 | 0| 0| 4|5 |4
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SVD decomposition

Example

0. 0.6
0. 05
0. 0.6
0.6 O.
0.6 0.
05 0.

U=

¥ = diag{(14.

0. 0.
0.6
0.3
0. 0.
—0.
-0.8

0.5
yT_ |05
0.
0.6

-03 0. 0. -0.38

-05 0. 0. 0.6
0.8 0. 0. 0.2
0. -08 —-02 0.

0. 0.2 08 0.

0. 06 06 O

13.7 1.2 06 0.6 0.5)}

0. 06 06 05
0.6 0. 0. 0.
-08 0. 0. 0.
0. —-02 08 -06
-0. 08 —-02 -06
0.2 0. 0. 0.
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SVD decomposition

Example (excluded insignificant concepts)

0. 06
0. 05
0. 06

Uz 06 0
06 0
05 0.

¥, = diag{(14. 13.7)}

yr_ (0 0 0 0606 05
2 05 0.6 06 0. 0. O.

Concepts may be

@ patterns among movies (along j) - action movie / romantic movie
@ patterns among people (along i) - boys / girls

Dimensionality reduction case: patterns along j axis.
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SVD decomposition

Applications

@ Example: new movie rating by new person
x=(5 00 0 0 0)
e Dimensionality reduction: map x into concept space:
y=V)x= (O 2.7)

@ Recommendation system: map y back to original movies
space:
Xx=yVy =(15 16 16 0 0 0)
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SVD decomposition

Fronebius norm

@ Fronebius norm of matrix X is || X|| ¢ & \/Zrlyzl P x2,

o Using properties || X||r = tr XXT and tr AB = tr BA, we
obtain:

Xl = t[UZVTVEUT] =t[UZ2UT] =

R
= u[ZUTU =[] =) o7 (6)
r=1
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SVD decomposition

Matrix approximation

Consider approximation X, = UL, VT, where
Y= diag{al, 02,...0x,0,0, ..., 0} S RRR,

X is the best approximation of X retaining k concepts. l

Proof: consider matrix Y, = UZ'VT, where ¥’ is equal to
except some R — k elements set to zero:

o, =0, =..=o0;,_ =0. Then, using (6)

IX = Yillp = |uE - v Za,p<za = IX = Xull

since o1 > 02 > ... > or > 0.

49/52



Dimensionality reduction - Victor Kitov

SVD decomposition

Matrix approximation

How many components to retain?

General case: Since

X — Xk||F_HUZ ) VTH Z o2
i=k+1

a reasonable choice is k* such that

R 2
X — Xy AP
I k|| _ Z’—S +1 i > threshold
1X1l >iny 0F

Visualization: 2 or 3 components.

v

For any matrix Y with rank Yi = k: || X — Xi||p < [|X = Yil|g
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SVD decomposition

Finding U and V

e Finding V
XTX = (UsVT)T UsvT = (VEUT)USVT = VE2VT | It
follows that
XXV =v2vTy = vy?

So V consists of eigenvectors of X T X with corresponding

eignvalues 0%, 03, ...0%.

e Finding U:
XXT = Usz(Usz) =UzVvTvzUuT = Uz2UT. So
XXTU=uz2uTu = Uz

So U consists of eigenvectors of XX Twith corresponding

eigenvalues 02,03, ...0%.
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SVD decomposition

Comments
o Denote the average X € RP : )_<J = Z,N:l Xjj
@ Denote the n-th row of X be X, € RP : Xnj = Xnj

@ For centered X sample covariance matrix X equals:

y = NZ(X X)(Xn — X)T ZXXT

o V consists of principal components since

o V consists of eigenvectors of X7 X,

e principal components are eignevectors of ¥ and
o T x XTX.
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