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Uncertainty Estimation: why should we care?

Goal: Provide the measure of uncertainty �̂�(x) of ML model prediction f̂ (x) at a given point.

Use cases:

Possibility of rejection to predict

Out of distribution data detection

Adversarial examples detection

Active learning

Bayesian optimization
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Regression and Uncertainty Estimation

Some machine learning models along with

approximation

f̂ (x) ≃ f (x)

can provide

uncertainty estimation

�̂�2(x) ≃ E
(︀
f̂ (x)− f (x)

)︀2
.
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Predictive Uncertainty Estimation

The data: D = {Xi ,Yi}ni=1 – i.i.d from some distribution P(x , y).

Usually: Yi = f (Xi ) + 𝜀i , i = 1, . . . , n.

The model f̂ (x) = f̂ (x | D) is constructed based on the data D.

Predictive confidence interval for confidence level 𝛼 > 0:

P
(︁
f (x) ∈

[︀
f̂ (x)− c𝛼(x), f̂ (x) + c𝛼(x)

]︀)︁
≥ 1− 𝛼.
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Predictive Confidence Intervals for Linear Regression

Yi = f (Xi ) + 𝜀i , i = 1, . . . , n.

f (x) = 𝛽0 + 𝛽1x ; 𝜀i ∼ 𝒩 (0, 𝜎2).

Standard least squares estimates: 𝛽0 and 𝛽1.

Under the model assumptions:

f̂ (x*) = 𝛽0 + 𝛽1x* ∼ 𝒩
(︀
𝛽0 + 𝛽1x*, �̂�

2(x*)
)︀
,

where �̂�2(x*) =
𝜎2

n

∑︀n
i=1(Xi−x*)2∑︀n
i=1 (Xi−X )2

.

Thus, the confidence interval for confidence level 𝛼 > 0 is:

[︀
𝛽0 + 𝛽1x* ± z𝛼/2 · �̂�(x*)].
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Machine Learning Models and Uncertainty Estimation

General approaches:
I Analytic statistical approaches (variance estimates and confidence intervals based on CLT);

I Bootstrap.

Bayesian inference

Model-specific approaches:
I Gaussian processes for regression and classification;

I Neural networks with variance-predicting subnetwork;

I Decision trees variance estimation at leaves.
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Uncertainty in Classification

Classification models usually predict some score, that could be treated as confidence.
For example, in binary task confidence of positive class for logistic regression is just value of
predicted probability:

p = f (x) = p (y = 1 | x) .

It generalizes on multiclass task by using the value of class with maximum probability

p = max
c

p (y = c | x) .

To get the uncertainty we should get the reverse value

fue = 1−max
c

p (y = c | x) .
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Uncertainty in Classification

If we have many classes, the information entropy (Shannon, 1948) could be more expressive

H (y | x) = −
∑︁
c

p (y = c | x) log p (y = c | x)

The problem with both maximum probability and entropy is that models happen to be
overconfident

Image source: “Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning” Yarin Gal et al, 2016
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Calibration

We could estimate the overconfidence by expected calibration error on a validation set.
The metric measures the difference in expectation between confidence and accuracy:

ECE = Ep̂[|P(Ŷ = Y | p̂ = p)− p|].

There are methods to improve model
calibration, i.e. temperature scaling (TS).

TS tweaks the single parameter of
softmax temperature T .

Given the logits values z , the new
predictions will be

q̂ = max
k

𝜎SM (z/T )(k) .

Image source: “On Calibration of Modern Neural Networks” Guo et al, 2017
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Probabilistic Models and Uncertainty Types

Probabilistic data generation:
(xi , yi ) ∼ p(x , y).

Joint probability density can be representeded in various ways:

p(x , y) = p(y | x)p(x) = p(x | y)p(y),

where

p(y | x) – likelihood;

p(x) – covariate distribution;

p(x | y) – label-conditional covariate distribution;

p(y) – distribution of labels.
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Train vs Test Data

In distribution: ptest(x , y) = ptrain(x , y).

Out-of-distribution: ptest(x , y) ̸= ptrain(x , y).

Variants:

Covariate shift: p(x) changes, p(y | x) is fixed.

Label shift: p(y) changes, p(x | y) is fixed.

Open set recognition: new classes are coming.

In this presentation we will stick to the term “OOD” for supervised problems as opposed to
“anomaly” used for unsupervised problems (this is not standard terminology).

Image source: “Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images” Nguyen et al. 2014.
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Epistemic vs Aleatoric Uncertainty

The prediction uncertainty can be decomposed into two terms: aleatoric and epistemic.

Aleatoric uncertainty reflects noise in data.
I It could be due to noisy labels, class overlap, or data ambiguity.

I This part of the predictive uncertainty can not be reduced when more data is given.

Epistemic uncertainty reflects lack of knowledge.
I It is due to the total absence or just a few samples from a particular region.

I This part of the predictive uncertainty can be reduced when more data is given.
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Epistemic vs Aleatoric Uncertainty. Example

Figure: Regions, where different types of uncertainty are prevalent.

Image source: https://towardsdatascience.com/my-deep-learning-model-says-sorry-i-dont-know-the-answer-that-s-absolutely-ok-50ffa562cb0b
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Epistemic vs Aleatoric Uncertainty. Example

Figure: (a) True data; (b) Data density (c) Predictive distribution (d) Total uncertainty (e) Aleatoric
uncertainty (f) Epistemic uncertainty

Image source: [Depeweg et al., 2018] Decomposition of uncertainty in bayesian deep learning for efficient and risk-sensitive learning, ICML 2018.
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Epistemic vs Aleatoric Uncertainty. Decomposition

It turns out, one could decompose the total predictive uncertainty mathematically. If we use
entropy as an uncertainty measure, for a new data point x* with predicted y* it could be
written as follows:

H Ep(𝜃|D)p(y
* | x*, 𝜃)⏟  ⏞  

Total uncertainty

= Ep(𝜃|D)Hp(y* | x*, 𝜃)⏟  ⏞  
Aleatoric uncertainty

+MI(y*, 𝜃 | x*,D)⏟  ⏞  
Epistemic uncertainty

, (1)

where

D is a training dataset;

𝜃 denotes parameters of our models
I different models in ensemble;
I different weights, sampled from variational approximation
I . . .
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Epistemic vs Aleatoric Uncertainty. Decomposition

It turns out, one could decompose the total predictive uncertainty mathematically. If we use
variance as an uncertainty measure, for a new data point x* with predicted y* it could be
written as follows:

𝜎2(y* | x*)⏟  ⏞  
Total uncertainty

= Ep(y*|𝜃,x*)𝜎
2(y* | 𝜃, x*)⏟  ⏞  

Aleatoric uncertainty

+Varp(𝜃|D)Ep(y*|𝜃,x*)y
*⏟  ⏞  

Epistemic uncertainty

. (2)

where

D is a training dataset;

𝜃 denotes parameters of our models
I different models in ensemble;
I different weights, sampled from variational approximation
I . . .
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Epistemic vs Aleatoric Uncertainty. Conclusion

It is essential to separate two types of uncertainty, because

The total uncertainty could be high for both regions, where epistemic or aleatoric
uncertainty is high.

For OOD detection we are not interested in aleatoric – it is “known-unknown”.
Thus, we have to have access to epistemic uncertainty (“unknown-unknown”) to find
OOD samples effectively.

To compute epistemic uncertainty, we can use mutual information (in case of regression)
or variance of the mean of predictive distribution (in case of classification).

Maxim Panov (Skoltech) OOD detection for NNs 08.07.2021 20 / 51



Outline

1 Uncertainty Estimation in Machine Learning

2 Probabilistic Models and Uncertainty Types

3 Out of Distribution Detection for Neural Networks
Uncertainty Estimation by Disagreement
Bayesian Models
Improving Uncertainty Estimates for Single Deterministic Model

Maxim Panov (Skoltech) OOD detection for NNs 08.07.2021 21 / 51



Outline

1 Uncertainty Estimation in Machine Learning

2 Probabilistic Models and Uncertainty Types

3 Out of Distribution Detection for Neural Networks
Uncertainty Estimation by Disagreement
Bayesian Models
Improving Uncertainty Estimates for Single Deterministic Model

Maxim Panov (Skoltech) OOD detection for NNs 08.07.2021 22 / 51



Uncertainty Estimation by Disagreement

Some models provide multiple predictions for a single point (i.e. members of the
ensemble or multiple passes for bayesian/dropout).

In this case, we could use disagreement between models as a measure of uncertainty.

One metric is mutual information, which is the difference between the entropy of the
mean and means of the entropy (i.e., epistemic uncertainty):

MI = Ep(𝜔|)

[︃∑︁
c

p(y = c | x,𝜔) log p(y = c | x,𝜔)

]︃
−
∑︁
c

p (y = c | x) log p (y = c | x) .

Another option is the variation ratio. It is defined as the proportion of cases with not
most popular prediction:

v := 1− fm
N
.
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Ensembles

An ensemble of models is a group of models solving the same task, i.e. with same
architecture, but different initialization.

Ensemble prediction averaging is well-known way to increase the performance in ML.

[Lakshminarayanan et al., 2017] showed that it could be used not only for accuracy but
for the uncertainty estimation as well, both for classification and regression tasks.

Further studies confirmed that ensembles outperform other methods in many cases.

Image source: “Can you trust your model uncertainty” Ovadiv et al, 2019
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Faster ensembling

The main downside of ensembles is k-time overhead both in computation time and
memory.

The are attempts to decrease the computational cost and memory consumption
I Monte-Carlo dropout [Gal and Ghahramani, 2016] allows to use a single model, but still

require k-time computation overhead
I DPP-based dropouts [Tsymbalov et al., 2020, Shelmanov et al., ] allow to diversify dropout

and use only last layer dropout, significantly increasing the speed
I Ensemble distribution distillation [Malinin et al., 2019] approximates the ensemble

distribution with Dirichlet distribution
I Some methods use different stage of training as ensemble members to speed up the training

(snapshot ensembles [Huang et al., 2017], fast geometric ensembling [Garipov et al., 2018]).

It is worth mentioning, that all methods beat the ensemble in computation cost, but they
are inferior in performance.
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Uncertainty Estimation for Neural Networks

Problem: While simple for linear regression it might be hard to construct confidence intervals
for more complex models.

Types of uncertainty estimates for Neural
Networks:

Analytic estimates;

Ensembling (NNs trained from different
initializations);

Bayesian Neural Networks;

Dropout-based.

MC-Dropout
from [Gal and Ghahramani, 2016].
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The problem with MC-Dropout

Overconfident predictions for out-of-sample points

Maxim Panov (Skoltech) OOD detection for NNs 08.07.2021 27 / 51



The problem with MC-Dropout

Overconfident predictions for out-of-sample points

MNIST data in 2-dimensional latent space of autoencoder.
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Prior Networks: introduction

Consider a distribution P(x, y) over objects and labels and a finite training dataset 𝒟
From the Bayesian perspective, a trained model induces a posterior predictive distribution
on the labels:

P(y0 | x0,𝒟) =

∫︁
P(y0 | x0, 𝜃)P(𝜃 | 𝒟)d𝜃. (3)

I For a classification task, the model returns a probability assignment for all classes and we get
a distribution of such assignments – a distribution on the probability simplex.

True posterior over the model parameters and the
integral in (3) are both intractable for large models

I It can be approximated using sampling
(MC-dropout, ensembling).
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Prior Networks: goals

Unlike previous approaches, here we want to explicitly parameterize a distribution on the
probability simplex using a DNN (we focus on the classification task):

𝜇 = [𝜇1, . . . , 𝜇K ] = [P(y = c1), . . . ,P(y = cK )],

P(𝜇 | x0,𝒟) =

∫︁
P(𝜇 | x0, 𝜃)p(𝜃 | 𝒟)d𝜇.

(4)

Still intractable, like (3). Use a point estimate:

P(𝜃 | 𝒟) = 𝛿(𝜃 − ̂︀𝜃) ⇒ P(𝜇 | x0,𝒟) ≈ P(𝜇 | x0, ̂︀𝜃) (5)
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Prior networks: model

Use Dirichlet distribution as a distribution on class probabilities. A Dirichlet Prior
Network will model parameters of this point-dependent distribution:

P(𝜇 | x0, ̂︀𝜃) = Dir(𝜇, 𝛼), 𝛼 = f (x0, ̂︀𝜃). (6)

Train the model:
I Optimize the following functional:

ℒ(𝜃) = EPin(x)KL[Dir(𝜇 | 𝛼in) | P(𝜇 | x, 𝜃)] + EPout(x)KL[Dir(𝜇 | 𝛼out) | P(𝜇 | x, 𝜃)]. (7)

I 𝛼0 =
∑︀

𝛼in,k is a hyperparameter;
I 𝛼in,k may correspond to the point masses in the corners of the simplex;
I 𝛼out = 1.
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Deterministic model uncertainty capturing

By deterministic model, we imply a single model with a single set of weights.

We will not be able to compute expectations w.r.t. model’s parameters, thus have to use
heuristics/proxies to separate aleatoric and epistemic uncertainties.

The general idea of these methods – use hidden feature representations learned by a
model to decide whether features extracted for a new unseen object are close to those
from the training set or not.

In the following slides, several approaches which fall into this paradigm will be presented.
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Deep Deterministic Uncertainty (DDU)

Why should it work?

Convolution layers are known to be good feature extractors for images.

They learn invariants over objects in the training dataset.

Learned convolutions trigger a learned template on the input image, provide higher
activations, or stay not-activated otherwise.

If an object, different from the training dataset, is taken as an input, the final
convolution’s triggers will be different from typical training triggers.

Objects, different from training ones (OOD), should provide
significantly different extracted features.
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Deep Deterministic Uncertainty (DDU)

A model could map different objects into the same feature representations if there are no
appropriate constraints. It is known as feature collapse problem.

To get rid of that, the model satisfy bi-Lipschitz constraint to be:

sensitive, to distinguish between different objects

smooth, to provide compact representations

K1‖x1 − x0‖ ≤ ‖f𝜃(x1)− f𝜃(x0)‖ ≤ K2‖x1 − x0‖ (8)

It could be satisfied with appropriate inductive biases:

Spectral normalization (to make model Lipschitz from above). Other options like gradient
penalty or weight clipping are also suitable,

Skip connections (ResNet architecture) to satisfy Lipschitz from below.
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Deep Deterministic Uncertainty (DDU)

Next step (proposed in [Mukhoti et al., 2021]) – fit Gaussian Mixture Model (GMM) in the
space of extracted features (another option – in the space of logits) with the number of
components, equal to the number of classes.

The proxy to epistemic uncertainty would be the density under trained GMM:

log p(x*features) = log

Ncl∑︁
i=1

p(x*features |𝜇i , 𝜎
2
i )p(ci ), (9)

where 𝜇i , 𝜎
2
i are parameters of a Gaussian distributions, associated with ci -th class. All classes

are assumed to have the same probability, thus p(ci ) =
1
Ncl

.
As for aleatoric uncertainty – it is expressed as a predictive entropy/variance when an object
is mapped to a high-density region.

On the validation set, we select a threshold to detect if the object is an outlier or not.
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Deep Uncertainty Quantification(DUQ)

This method uses the same idea of extracting features but utilizes non-parametric model to
estimate the density of an object in feature space.

Specifically, they use the RBF kernel to capture epistemic uncertainty:

Kc(f𝜃(x), ec) = exp
[︁
−

1
n‖Wc f𝜃(x)− ec‖2

2𝜎2

]︁
, (10)

where ec – a centroid of a corresponding class and Wc – a weight matrix, learned for each
class.

The loss function is used for the method is given by:

L(x , y) = −
∑︁
c

yc log(Kc) + (1− yc) log(1− Kc) (11)

The class centroids are updated using an exponential moving average of the feature vectors of
data points belonging to that class.
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Deep Uncertainty Quantification(DUQ)

As in DDU, in DUQ we have to regularize a network to provide sensitive and smooth feature
encoding. Authors are using ResNet architecture with gradient penalty to satisfy the
bi-Lipschitz constraint.

The authors stress that a network must be bi-Lipschitz, illustrating it on the example:
From left to right: Deep ensembles, bi-Lipschitz network (DUQ), No Lipschitz
regularization (DUQ), one-side Lipschitz regularization (DUQ)

[Van Amersfoort et al., 2020] Uncertainty estimation using a single deep deterministic neural network.
ICML, 2020.
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Nonparametric Uncertainty Quantification (NUQ)

Consider a binary classification problem on (X ,Y ) ∈ Rd×{0, 1}.

We aim to find the rule ĝ which approximates the optimal one on the dataset 𝒟 :

g* = argmin
g

P(g(X ) ̸= Y ).

Here g : Rd → {0, 1} is any classifier. The probability of wrong classification
ℛg = P(g(X ) ̸= Y ) is usually called risk. The rule g* is given by the Bayes optimal classifier :

g*(x) =

{︃
1, 𝜂(x) ≥ 1

2 ,

0, 𝜂(x) < 1
2 ,

where 𝜂(x) = p(Y = 1 | X = x) which is the conditional distribution of Y given X = x under
the distribution P.
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Nonparametric Uncertainty Quantification (NUQ)

Consider a classification rule ĝ(x) = ĝ𝒟(x) based on the dataset 𝒟. Define a pointwise
expected risk of estimation:

ℛ(x) = P(ĝ(X ) ̸= Y | X = x),

where P(ĝ(X ) ̸= Y | X = x) ≡ Ptr(ĝ(X ) ̸= Y | X = x) ≡ Ptest(ĝ(X ) ̸= Y | X = x).

The value ℛ(x) is independent of covariate distribution ptest(X ) and essentially allows to
define a meaningful target of estimation which is based solely on the quantities known for the
training distribution.

Maxim Panov (Skoltech) OOD detection for NNs 08.07.2021 41 / 51



NUQ: Risk decomposition

Total risk value ℛ(x) admits the following decomposition:

ℛ(x) = ℛ̃(x) +ℛ*(x),

where

ℛ*(x) = P(g*(X ) ̸= Y | X = x) is Bayes risk;

ℛ̃(x) = P(ĝ(X ) ̸= Y | X = x)− P(g*(X ) ̸= Y | X = x) is an excess risk.
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NUQ: Risk decomposition

First, we assume that the classifier ĝ has the standard form:

ĝ(x) =

{︃
1, 𝜂(x) ≥ 1

2 ,

0, 𝜂(x) < 1
2 ,

where 𝜂(x) = p̂(Y = 1 | X = x) is an estimate of the conditional density 𝜂(x).

We can bound the excess risk via the following inequality:

ℛ̃(x) = p(ĝ(X ) ̸= Y | X = x)− p(g*(X ) ̸= Y |X = x) ≤ 2|𝜂(x)− 𝜂(x)|.

It allows us to obtain an upper bound for the risk:

ℛ(x) ≤ ℒ(x) = ℛ*(x) + 2|𝜂(x)− 𝜂(x)|,

where ℛ*(x) = min{𝜂(x), 1− 𝜂(x)} is just the Bayes risk.
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NUQ: Method
For ĝ we use a kernel-based estimator of the conditional density as it has helpful asymptotic
properties.
For a class label c , the conditional probability estimate can be expressed as:

p̂(Y = c | X = x) =

∑︀n
i=1 Kh(xi − x)[yi = c]∑︀n

j=1 Kh(xj − x)
.

Note that in case of c = 1 the equation above gives us 𝜂(x).
The difference between 𝜂(x)− 𝜂(x) for properly chosen bandwidth h converges in distribution
as follows:

𝜂(x)− 𝜂(x) → 𝒩
(︂
0,

1

nhd
𝜎2(x)

p(x)

∫︁
[K (u)]2du

)︂
, (12)

where n is the number of data points in the training set, K (·) is the kernel used for KDE, h is
the bandwidth of the kernel; d is the dimensionality of the problem and 𝜎2(x) is the standard
deviation of the data label at point x .
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NUQ: Method

We suggest to consider the following measure of the total uncertainty:

Ut(x) = min{𝜂(x), 1− 𝜂(x)}+ 2

√︂
2

𝜋
𝜏(x),

which is obtained by considering an asymptotic approximation of

E𝒟ℒ(x) = min{𝜂(x), 1− 𝜂(x)}+ 2E𝒟|𝜂(x)− 𝜂(x)|

in a view of (12) and the fact, that E|𝜉| =
√︁

2
𝜋 for the standard normal variable 𝜉.

The resulting estimate upper bounds the average error of estimation at point x and thus
indeed can be used as the measure of total uncertainty.

We can efficiently approximate Ut(x) using the kernel-based method.

Maxim Panov (Skoltech) OOD detection for NNs 08.07.2021 45 / 51



NUQ: Results on MNIST and CIFAR-10
We test some heuristics people usually interpret as uncertainty measures: entropy and
maxprob.
For that we concatenate MNIST (rotated for random angle from 45 to 90 degrees) and
grayscaled CIFAR-10 dataset. Then, we sort images according to their uncertainties and plot
the following:
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NUQ: Results on CIFAR-100 and ImageNet

We compare different SOTA approaches on large datasets, splitting some non-overlapping
classes (like all birds) away and considering them as OOD.

Entropy* MC dropout Ensembles TTA DDU* NUQ*

S1 0.821±0.006 0.819±0.007 0.846±0.001 0.850±0.006 0.834±0.009 0.849±0.011

S2 0.820±0.003 0.819±0.004 0.848±0.003 0.838±0.005 0.826±0.002 0.843±0.004

S3 0.816±0.005 0.814±0.005 0.837±0.011 0.834±0.009 0.860±0.006 0.862±0.004

Table: ROC-AUC score on CIFAR100 out-of-distribution detection for different methods and splits (S1,
S2 and S3). Methods requiring single pass over the data to compute uncertainty estimates are marked
with *.

MaxProb* Entropy* TTA MC Dropout NUQ*

0.77 0.791 0.803 0.781 0.914

Table: ROC-AUC score on ImageNet out-of-distribution detection for different methods.
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NUQ: Results

Finally, we evaluate on CIFAR-100, if usage of spectral normalization is crucial for OOD
detection:

MaxProb Entropy NUQ (no spectral) NUQ (spectral)

Split 1 0.806±0.006 0.821±0.006 0.833±0.007 0.849±0.011

Split 2 0.806±0.005 0.820±0.003 0.843±0.003 0.843±0.004

Split 3 0.801±0.005 0.816±0.005 0.824±0.004 0.862±0.004

Table: Comparing the influence of spectral normalization on the model performance for OOD detection,
ROC-AUC
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Conclusions

Summary:

it is important to correctly model different sources of uncertainty;

out-of-distribution data detection is a challenging task;

its solution requires not only the development of the special algorithms

but also the careful work with the model architecture and training procedure;

it is possible to obtain the results on par with ensembles by principled uncertaitny
estimates based on a single deterministic network.
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Thank you for your attention!
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