# Тема III

Теория перечисления Пойа

#### Разделы

- Действие группы на множестве
- Применение леммы Бёрнсайда для решения комбинаторных задач
- Применение теоремы Пойа для решения комбинаторных задач
- Задачи с решениями
- Что надо знать

# Действие группы на множестве: два определения

- ullet Группа  ${f G} = \langle\,G,\,\circ,\,e\,
  angle$ , |G| = n.
- Множество T, |T| = N.
  - Bij(T) множество всех биекций (перестановок) элементов T.
  - Symm(T) симметрическая группа множества T:

$$Symm(T) = \langle Bij(T), *, 1_T \rangle,$$

# Определение (I)

$$\alpha \in \text{Hom } (\mathbf{G}, Symm(T)).$$

Действие  $\alpha$  группы  $\mathbf{G}$  на множестве T: символически —  $\mathbf{G}$  : T.

# Действие группы на множестве: два определения...

# Определение (II)

$$\alpha = \langle G, T; \circ, \star, e \rangle,$$

где

$$G \times G \stackrel{\circ}{\to} G$$
 — групповая операция;  $G \times T \stackrel{\star}{\to} T$  — новая операция.

Аксиомы для операций:

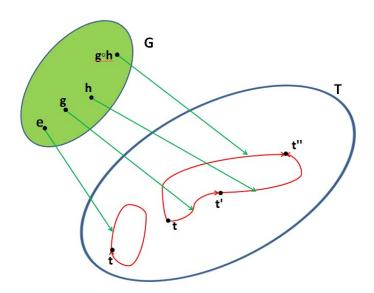
- $\bullet \ e \star t = t;$
- $\bullet (g \circ h) \star t = h * (g \star t).$

Запись операции  $\star$ : g(t) = t'.

Аксиомы: e(t) = t и  $(g \circ h)(t) = h(g(t))$ .

Т.е. элементы g группы G порождают перестановки на T, обладающие вышеуказанными свойствами.

## Действие группы на множестве: схема



## Для данной перестановки g:

Введём отношение эквивалентности  $\sim_a$  на T —

$$t \sim_g t' \stackrel{\text{def}}{=} \exists k \left( g^k(t) = t' \right)$$

- Смежные классы эквивалентности  $\sim_g$  называют g-циклами.
- Число всех смежных классов обозначим C(g).
- ullet Количества циклов длины  $1,\,2,\,\ldots,\,N$  обозначают  $u_1,\,
  u_2,\,\ldots,\,
  u_N$  или  $u_1(g),\,
  u_2(g),\,\ldots,\,
  u_N(g).$
- Упорядоченную совокупность количеств циклов  $\langle \nu_1, \nu_2, \dots, \nu_N \rangle$  называют типом перестановки g и обозначают Type(g).

Понятно, что 
$$C(g) = \sum\limits_{k=1}^N \nu_k(g)$$
 и  $\sum\limits_{k=1}^N k \cdot \nu_k(g) = N.$ 

 $T = \{1, \ldots, 10\},\$ 

Действие группы на множестве

#### Тип перестановки: пример

Пусть

$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 9 & 6 & 1 & 8 & 5 & 2 & 7 & 10 & 3 & 4 \end{pmatrix} = (1,9,3)(2,6)(4,8,10)(5)(7)$$

Тогда

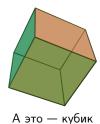
$$Type(g) = \langle 2, 1, 2, 0, \dots, 0 \rangle,$$

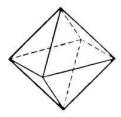
$$C(g) = 2 + 1 + 2 = 5,$$
  $|T| = 2 \cdot 1 + 1 \cdot 2 + 2 \cdot 3 = 10.$ 

## Платоновы тела — правильные 3-х мерные многогранники



Это тетраэдр





Октаэдр двойственен кубу

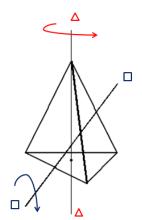
#### Платоновы тела — правильные 3-х мерные многогранники

| Платоновы тела       | Группа вращения | Порядок группы    |
|----------------------|-----------------|-------------------|
| тетраэдр             | T (тетраэдра)   | $4 \cdot 3 = 12$  |
| куб и октаэдр        | O (октаэдра)    | $8 \cdot 3 = 24$  |
| икосаэдр и додекаэдр | Y (икосаэдра)   | $12 \cdot 5 = 60$ |



## T — группа вращения тетраэдра

$$T = \langle t, f \rangle, \ t^3 = f^2 = e$$
, где:



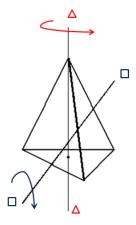
t — вращение на  $120^{\circ}$  вокруг оси, проходящей через вершину и центр тетраэдра ( $\Delta - \Delta$ ); таких осей 4.

f — вращение на  $180^{\circ}$  вокруг оси, проходящей через центры двух противоположных рёбер ( $\square$ — $\square$ ); таких осей 3.

$$|T| = (3-1) \cdot 4 + (2-1) \cdot 3 + 1 = 12.$$

Тетраэдр двойственен самому себе  $\Rightarrow$  действие на грани = действие на вершины.

# Действие T на грани (или вершины) тетраэдра: типы перестановок



$$\Box: Type(t) = Type(t^2) = \langle 1, 0, 1, 0 \rangle;$$

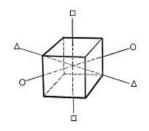
$$\triangle$$
:  $Type(f) = \langle 0, 2, 0, 0 \rangle$ .

$$|T| = 2 \cdot 4 + 1 \cdot 3 + 1 = 12.$$

Тетраэдр двойственен самому себе  $\Rightarrow$  действие на грани = действие на вершины.

# О — группа вращения куба

$$O = \langle t, f, r \rangle, t^4 = f^2 = r^3 = e$$
, где

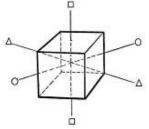


t — вращение на  $90^\circ$  вокруг оси, проходящей через середины двух противоположных граней ( $\square$ — $\square$ ), f — вращение на  $180^\circ$  вокруг оси, проходящей через середины двух противоположных рёбер ( $\circ$ — $\circ$ ), r — вращение на  $120^\circ$  вокруг оси, проходящей через две противоположные вершины ( $\Delta$ — $\Delta$ )

Сколько осей каждого типа? 3, 6 и 4 соответственно.

$$|O| = 3 \cdot 3 + 1 \cdot 6 + 2 \cdot 4 + 1 = 24.$$

# Действие О на вершины куба: типы перестановок



$$\Box: Type(t) = Type(t^3) =$$

$$= \langle 0, 0, 0, 2, 0, \ldots \rangle,$$

$$Type(t^2) = \langle 0, 4, 0, \ldots \rangle;$$

$$^{\Delta} \circ : Type(f) = \langle 0, 4, 0, \ldots \rangle;$$

$$\triangle: Type(r) = Type(r^2) = \langle 2, 0, 2, 0, \ldots \rangle.$$

# По всей группе G:

Отношение эквивалентности  $\sim_{\mathbf{G}}$  на T —

$$t \sim_{\mathbf{G}} t' \stackrel{\text{def}}{=} \underset{G}{\exists} g (g(t) = t').$$

Классы этой эквивалентности называют *орбитами*.

Число орбит (классов эквивалентности) —  $C(\mathbf{G})$ .

Если  $C(\mathbf{G})=1$  (любой элемент T может быть переведён в любой), то действие  $\mathbf{G}: T$  называют *транзитивным*.

Класс эквивалентности, в которую попадает элемент t будем обозначать  $\operatorname{Orb}(t)$ .

## Фиксатор и стабилизатор. Лемма Бёрнсайда

Будем решать уравнение g(t) = t.

При выполнении этого равенства можно фиксировать  $\,t\,$  или  $\,g.$ 

• Фиксируем g, т.е. находим все элементы множества T, которые перестановка g оставляет на месте (фиксатор):

$$\{t \in T \mid g(t) = t\} \stackrel{\text{def}}{=} \text{Fix}(g) \subseteq T.$$

② Фиксируем t, т.е. находим все перестановки g, которые оставляют данный элемент неподвижным (*стабилизатор*):

$$\{g \in G \mid g(t) = t\} \stackrel{\text{def}}{=} \operatorname{Stab}(t) \subseteq G.$$

Справедливы равенства

$$C(\mathbf{G}) = \frac{1}{|G|} \sum_{g \in G} \left| \operatorname{Fix}(g) \right| = \frac{1}{|G|} \sum_{t \in T} \left| \operatorname{Stab}(t) \right|;$$

первое называется леммой Бёрнсайда.

# У. Бёрнсайд



**У**ильям **Бёрнсайд** (William Burnside, 1852–1927) ийский математик-алгебраист.

— английский математик-алгебраист. «Написал первый трактат о группах на английском языке и был первым, кто разработал теорию групп с современной абстрактной точки зрения».

Также знаменит формулированием проблемы Бёрнсайда (1902):

Будет ли конечно порождённая группа, в которой каждый элемент имеет конечный порядок, обязательно конечной?

# Стабилизатор есть подгруппа группы G

- **1**  $\operatorname{Fix}(g) \phi$ иксатор перестановки g элемента группы  $\mathbf{G}$ ;

#### Лемма

Stab 
$$(t) \leqslant \mathbf{G}$$
.

#### Доказательство

Зафиксируем  $t\in T$  и рассмотрим  $g,\,h\in\mathrm{Stab}\,(t)$ . Тогда g(t)=h(t)=t и  $h^{-1}(t)=t$ . Следовательно,

$$(g \circ h^{-1}) * t = t \Rightarrow g \circ h^{-1} \in \operatorname{Stab}(t).$$

 $|\operatorname{Stab}(t)| \geqslant 1$ , поскольку всегда  $e \in \operatorname{Stab}(t)$ .

# Элемент множества: длина орбиты и стабилизатор

#### Лемма

Длина орбиты  $\operatorname{Orb}\left(t\right)$  равна индексу  $\operatorname{Stab}\left(t\right)$  в группе  $\mathbf{G}$ , т.е.

$$|\operatorname{Orb}(t)| = |G| : |\operatorname{Stab}(t)|.$$

## Пример

Пусть V — множество вершин куба. Найти стабилизатор вершины куба при действии группы O на V.

<u>Решение</u>:  $\mathrm{Stab}\,(v)\cong Z_3$  — группа вращений на  $120^\circ$  вокруг диагонали куба, проходящей через данную вершину.

# Утверждение (следствие леммы)

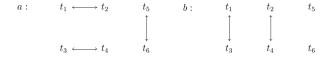
Число элементов в группе вращения правильного многогранника есть  $|V|\cdot |E_0|$ , где |V| — число вершин, а  $|E_0|$  — число рёбер, выходящих из одной вершины.

# Действие группы на множестве: пример

# Действие группы $V_4$ на множестве $T = \{t_1, \ldots, t_6\}$

| 0  | e  | a  | b  | ab |
|----|----|----|----|----|
| e  | e  | a  | b  | ab |
| a  | a  | e  | ab | b  |
| b  | b  | ab | e  | a  |
| ab | ab | b  | a  | e  |

| ( -, , , , , |       |       |       |       |       |       |
|--------------|-------|-------|-------|-------|-------|-------|
| g*t          | $t_1$ | $t_2$ | $t_3$ | $t_4$ | $t_5$ | $t_6$ |
| e            | $t_1$ | $t_2$ | $t_3$ | $t_4$ | $t_5$ | $t_6$ |
| a            | $t_2$ | $t_1$ | $t_4$ | $t_3$ | $t_6$ | $t_5$ |
| b            | $t_3$ | $t_4$ | $t_1$ | $t_2$ | $t_5$ | $t_6$ |
| ab           | $t_4$ | $t_3$ | $t_2$ | $t_1$ | $t_6$ | $t_5$ |





# Действие группы на множестве: пример...

$$Type(e) = \langle 6, 0, 0, 0, 0, 0 \rangle, \qquad Type(a) = \langle 0, 3, 0, 0, 0, 0, 0 \rangle,$$

$$Type(b) = \langle 2, 2, 0, 0, 0, 0 \rangle, \qquad Type(ab) = \langle 0, 3, 0, 0, 0, 0, 0 \rangle.$$

$$C(e) = 6, C(a) = C(ab) = 3, C(b) = 4.$$

$$Stab(t_1) = Stab(t_2) = Stab(t_3) = Stab(t_4) = e \leqslant V_4,$$

$$Stab(t_5) = Stab(t_6) = \langle e, b \rangle \leqslant V_4.$$

$$Fix(a) = Fix(ab) = \emptyset, \quad Fix(b) = \{t_5, t_6\}, \quad Fix(e) = T.$$

$$|\operatorname{Orb}(t_1)| = \frac{4}{1} = 4, \quad |\operatorname{Orb}(t_5)| = \frac{4}{2} = 2.$$

$$\frac{1}{4} \sum_{g \in G} |\operatorname{Fix}(g)| = \frac{6+2}{4} = 2,$$

$$\frac{1}{4} \sum_{t \in T} |\operatorname{Stab}(t)| = \frac{4 \cdot 1 + 2 \cdot 2}{4} = 2.$$

#### Разделы

- Действие группы на множестве
- Применение леммы Бёрнсайда для решения комбинаторных задач
- Применение теоремы Пойа для решения комбинаторных задач
- Задачи с решениями
- Что надо знать

# Пример применения леммы Бёрнсайда

**Задача** (про слова). Составляются слова длины  $l \geqslant 2$  из алфавита  $A = \{a_1, \ldots, a_m\}$ .

Слова считаются эквивалентными, если они получаются одно из другого перестановкой крайних букв. Определить число S неэквивалентных слов.

**Решение.** T — множество слов длины l в алфавите A,  $N = |T| = m^l$ .

Надо представить эквивалентности как орбиты некоторого действия подходящей группы G на T.

Очевидно,  $g^2 = e$  и поэтому подходит  $\mathbf{G} \cong Z_2 = \{e, g\}.$ 

Действие: g переставляет в слове крайние буквы.

# Пример применения леммы Бёрнсайда...

Число S неэквивалентных слов есть число классов эквивалентности  $C(\mathbf{G})$  действия  $Z_2 \mathop:_{lpha} T$  —

$$|\operatorname{Fix}(e)| = |T| = m^{l}, \quad |\operatorname{Fix}(g)| = m^{l-2} \cdot m = m^{l-1}.$$

$$S = C(Z_{2}) = \frac{1}{2} \sum_{g \in G} |\operatorname{Fix}(g)| = \frac{m^{l} + m^{l-1}}{2} = \frac{m^{l-1}(m+1)}{2}.$$

Для  $l=3,\ m=2 \Rightarrow S=\frac{4\cdot 3}{2}=6$  (из всего 8) Пусть  $A=\{a,b\}$ . Показаны слова и классы.

| aaa | baa |
|-----|-----|
| aab | bab |
| aba | bba |
| abb | bbb |

## Цикловой индекс

Существует универсальный способ вычисления числа

$$\frac{1}{|G|}\sum_{g\in G}\left|\operatorname{Fix}\left(g\right)\right|=C(\mathbf{G})$$
 классов эквивалентности (орбит).

Сопоставим каждой перестановке  $g \in \mathbf{G}$  вес w(g) по правилу:

$$Type(g) = \langle \nu_1, \dots, \nu_N \rangle \Rightarrow w(g) = \underbrace{x_1^{\nu_1} \cdot \dots \cdot x_N^{\nu_N}}_{\text{MOHOM}}.$$

#### Определение

Средний вес подстановок в группе называется цикловым индексом действия G:T:

$$P(\mathbf{G}; T, x_1, \dots, x_N) = \frac{1}{|G|} \sum_{g \in G} w(g) = \frac{1}{|G|} \sum_{g \in G} x_1^{\nu_1} \cdot \dots \cdot x_N^{\nu_N}$$

Для продвинутых: это производящий полином от многих переменных.

# Цикловой индекс: обозначения и свойства

Другие обозначения:  $P_{\mathbf{G}}(x_1, ..., x_N)$  и  $P_{\mathbf{G}}$ ,  $P(\mathbf{G})$ .

- ${f G}\cong {f G}'\Rightarrow P_{{f G}}=P_{{f G}'}$  да, если действия определены одинаково (согласовано)
- ullet  $P_{\mathbf{G}}=P_{\mathbf{G}^{\,\prime}} 
  eq \mathbf{G} \cong \mathbf{G}^{\,\prime}$  нет, есть контрпример

# Как применять лемму «не-Бёрнсайда?»

Для применения универсального способа вычисления  $C(\mathbf{G})$  надо представить эквивалентные элементы множества как классы эквивалентности действия некоторой группы на этом множестве.

### Число неэквивалентных раскрасок

Пусть задано действие  $\mathbf{G} : T$  группы  $\mathbf{G}$  на множестве T.

- Припишем каждому элементу T одно из r значений (неформально: покрасим в один из r цветов). Всего, очевидно, имеется  $r^N$  раскрасок.
- Не будем различать раскраски, если при преобразовании  $g:t\to t'$  элемент сохраняет цвет. Например, поворот на 00°



не даёт нового раскрашивания вершин квадрата.

**<u>Вопрос</u>**: Сколько существует неэквивалентных раскрасок = классов эквивалентности  $C(\mathbf{G})$ ?

# Вычисление $C(\mathbf{G})$ через цикловой индекс

- Каждый класс эквивалентности это g-цикл; их  $C(g) = \nu_1 + \ldots + \nu_N$  штук.
- ullet Каждая перестановка  $g \in \mathbf{G}$  с типом  $\langle \, 
  u_1, \, \dots, \, 
  u_N \, 
  angle$  будет иметь  $r^{C(g)}$  неподвижных точек.

Следовательно, по лемме Бёрсайда, число полученных классов эквивалентности, т.е. неэквивалентных раскрасок

#### Теорема

$$C(\mathbf{G} : T) = P(\mathbf{G} : T, x_1, \dots, x_N) \Big|_{x_1 = \dots = x_N = r} = P_{\mathbf{G}}(r, \dots, r).$$

Например,  $P_{\mathbf{G}}(1,\ldots,1)=1$ : если все элементы покрасить в один цвет, то таких раскрасок одна.

# Задача (про слова)

Составляются слова длины  $l\geqslant 2$  из алфавита  $\{a_1,\ldots,a_m\}$ . Слова считаются эквивалентными, если они получаются одно из другого перестановкой крайних букв.

Определить число S неэквивалентных слов.

Было решение: 
$$S=\frac{m^l+m^{l-1}}{2}$$
. Другое решение:  $\mathbf{G}=\{e,g\}\cong Z_2;\ T:$ 

| Элемент группы $g$ | Type(g)                                | w(g)             | #мономов |
|--------------------|----------------------------------------|------------------|----------|
| $\overline{e}$     | $\langle l, 0, \ldots, 0 \rangle$      | $x_1^l$          | 1        |
| g                  | $\langle l-2, 1, 0, \ldots, 0 \rangle$ | $x_1^{l-2}x_2^1$ | 1        |

Цикловой индекс: 
$$P(x_1, \ldots, x_l) = \frac{1}{2} \left[ x_1^l + x_1^{l-2} x_2^1 \right].$$
  $P(x_1, \ldots, x_l) \big|_{x_1 = \ldots = x_l = m} = S.$ 

# Классическая комбинаторная задача об ожерельях

Ожерелье — окружность, на которой на равных расстояниях по дуге располагаются «бусины» (бусины располагаются в вершинах правильного многоугольника).

Задача (об ожерельях). Сколько различных ожерелий можно составить из N бусин r цветов?

Варианты. Ожерелья равны iff одно получается из другого (симметрия в плоскости или в пространстве):

- поворотом (бусины плоские, окрашены с одной стороны);
- поворотом и осевой симметрией (бусины круглые).



### Задача об ожерельях: N = 5, r = 3

Сколько разных ожерелий можно составить из 5 бусин 3 цветов?

T — вершины правильного пятиугольника. #Col(3) = ?

• Ожерелья одинаковы, если одно получается из другого поворотом.

Решение.  $\mathbf{G} \cong Z_5 = \langle t \rangle$ ,  $t^5 = e$ , n = 5.

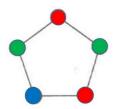
| Элемент группы $g$ | Type(g)                         | w(g)    | # мономов |
|--------------------|---------------------------------|---------|-----------|
| $\overline{e}$     | $\langle 5, 0, 0, 0, 0 \rangle$ | $x_1^5$ | 1         |
| $t, t^2, t^3, t^4$ | $\langle 0, 0, 0, 0, 1 \rangle$ | $x_5$   | 4         |

Цикловой индекс:  $P(x_1, x_2, x_3, x_4, x_5) = \frac{1}{5} [x_1^5 + 4x_5].$ 

$$\#Col(3) = P(3,...,3) = \frac{3^5+4\cdot3}{5} = \frac{3\cdot85}{5} = 3\cdot17 = 51.$$

# Задача Олимпиады «Покори Воробьёвы горы – 2009»

Для 50 детей детского сада закуплены 50 одинаковых тарелок. По краю каждой тарелки равномерно расположено 5 белых кружочков. Воспитатели хотят перекрасить какие-либо из этих кружочков в другой цвет так, чтобы все тарелки стали различными. Какое наименьшее число дополнительных цветов потребуется им для этого?



# Как должны были решать школьники

#### Решение.

Пусть требуется r цветов.

Отбросим r вариантов раскраски в один цвет.

Число остальных вариантов без учёта возможности поворота тарелки —  $r^5-r$ ;

с учётом поворота —  $\frac{r^5-r}{5}$  (каждый вариант повторятся 5 раз).

Итого: 
$$\#Col(r) = \frac{r^5 - r}{5} + r = \frac{r^5 + 4r}{5};$$

При 2-х дополнительных цветах #Col(3) = 51.

# Задача об ожерельях: N=5, r=3, 2-й вариант

**2** Ожерелья одинаковы, если одно получается из другого поворотом или переворотом.

G- группа диэдра:

$$\mathbf{G} \cong D_5 = \langle t, f \rangle, \ t^5 = f^2 = e, \ n = |D_5| = 10.$$

| Элемент группы $g$     | Type(g)                         | w(g)       | # мономов |
|------------------------|---------------------------------|------------|-----------|
| e                      | $\langle 5, 0, 0, 0, 0 \rangle$ | $x_1^5$    | 1         |
| $t, t^2, t^3, t^4$     | $\langle 0, 0, 0, 0, 1 \rangle$ | $x_5$      | 4         |
| $f, tf, \ldots, t^4 f$ | $\langle 1, 2, 0, 0, 0 \rangle$ | $x_1x_2^2$ | 5         |
| Всего                  |                                 |            | 10        |

Цикловой индекс: 
$$P=rac{1}{10}\left[x_1^5+4x_5+5x_1x_2^2\right].$$

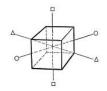
$$\#Col(3) = P(x_1, \dots, x_5)|_{x_1 = \dots = x_5 = 3} = \frac{3^5 + 4 \cdot 3 + 5 \cdot 3^3}{10} = 39.$$

Запомним этот ответ.

# Задача о раскраске куба

Задача (раскраска граней куба в два цвета). Грани куба раскрашивают в 2 и 3 цвета. Сколько существует различно окрашенных кубов?

**Решение.** Напоминание:  $G = O = \langle t, f, r \rangle$ , |O| = 24.



t — вращение на  $90^{\circ}$  вокруг оси, проходящей через середины двух противоположных граней ( $\square$ — $\square$ , 3 оси); f — вращение на  $180^{\circ}$  вокруг оси, проходящей через середины двух противоположных рёбер ( $\circ$ — $\circ$ , 6 осей);

r — вращение на  $120^{\circ}$  вокруг оси, проходящей через две противоположные вершины ( $\Delta - \Delta$ , 4 оси).

# Задача о раскраске куба: обозначения элементов

Обозначим через F множество граней куба; |F|=N=6. Выберем некоторую грань куба (квадрат) и обозначим её 1, а параллельную ей -2.

Перенумеруем последовательно вершины грани 1 числами  $1,\ldots,4$ , а вершины грани 2 — числами  $5,\ldots,8$  так, что вершина с номером i смежна с вершиной с номером  $i+4,\ i=1,2,3,4.$ 

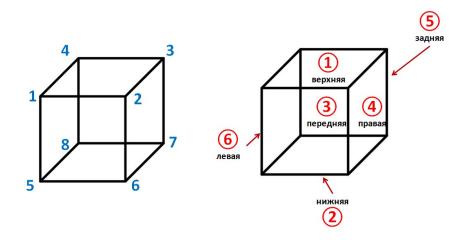
Перестановки далее указаны для случая, когда ось вращения

- $\langle t 
  angle$  проходит через середины граней ① и ②,
- $\langle f \rangle$  проходит через середины рёбер ( 3-7 ) и ( 1-5 ),
- $\langle s \rangle$  проходит через вершины (1) и (7),

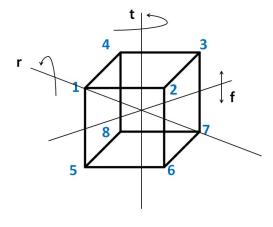
а грани обозначены:

(1-2-6-5) через 3, параллельная ей грань — 5, грань (2-3-7-6) — через 4, параллельная ей грань — 6.

# Задача о раскраске куба: обозначения вершин и граней



### Задача о раскраске куба: обозначения осей



# Задача о раскраске куба...

| $g \in O$      | перестановка   | Type(g)                              | w(g)          | #w(g)           |
|----------------|----------------|--------------------------------------|---------------|-----------------|
| $\overline{e}$ | (1)(6)         | $\langle 6, 0, \dots \rangle$        | $x_1^6$       | 1               |
| $t, t^3$       | (1)(2)(3456)   | $\langle 2, 0, 0, 1, 0, \rangle$     | $x_1^2x_4$    | $3 \cdot 2 = 6$ |
| $t^2$          | (1)(2)(35)(46) | $\langle 2, 2, 0, \ldots \rangle$    | $x_1^2 x_2^2$ | 3               |
| f              | (12)(36)(45)   | $\langle 0, 3, 0, \ldots \rangle$    | $x_{2}^{3}$   | 6               |
| $r, r^2$       | (136)(245)     | $\langle 0, 0, 2, 0, \ldots \rangle$ | $x_3^2$       | $4 \cdot 2 = 8$ |
| Всего          |                |                                      |               | 24              |

$$P(x_1, ..., x_6) = \frac{1}{24} \left[ x_1^6 + 6x_1^2 x_4 + 3x_1^2 x_2^2 + 6x_2^3 + 8x_3^2 \right].$$

$$\#Col(2) = P(2, ..., 2) = \frac{1}{24} \left[ 2^6 + 12 \cdot 2^3 + 3 \cdot 2^4 + 8 \cdot 2^2 \right] = 10,$$

$$\#Col(3) = P(3, ..., 3) = \frac{1}{24} \left[ 3^6 + 12 \cdot 3^3 + 3 \cdot 3^4 + 8 \cdot 3^2 \right] = 48.$$

# Цикловой индекс действия группы октаэдра —

— на множество R рёбер куба (|R| = N = 12):

| $g \in O$      | Type(g)                              | w(g)          | #w(g)           |
|----------------|--------------------------------------|---------------|-----------------|
| $\overline{e}$ | $\langle 12, 0, \ldots \rangle$      | $x_1^{12}$    | 1               |
| $t, t^3$       | $\langle 0, 0, 0, 3, 0, 0 \rangle$   | $x_{4}^{3}$   | $3 \cdot 2 = 6$ |
| $t^2$          | $\langle 0, 6, 0, \dots \rangle$     | $x_{2}^{6}$   | 3               |
| f              | $\langle 2, 5, 0, \ldots \rangle$    | $x_1^2 x_2^5$ | 6               |
| $r, r^2$       | $\langle 0, 0, 4, 0, \ldots \rangle$ | $x_{3}^{4}$   | $4 \cdot 2 = 8$ |
| Всего          |                                      |               | 24              |

Цикловой индекс:

$$P(O:_{\alpha}R) = \frac{1}{24} \left[ x_1^{12} + 6x_4^3 + 3x_2^6 + 6x_1^2 x_2^5 + 8x_3^4 \right].$$

# Цикловой индекс действия группы октаэдра —

— на множество 
$$V$$
 вершин куба ( $|V| = N = 8$ ):

| $g \in O$      | Type(g)                            | w(g)          | #w(g)           |
|----------------|------------------------------------|---------------|-----------------|
| $\overline{e}$ | $\langle 8, 0, \dots \rangle$      | $x_1^8$       | 1               |
| $t, t^3$       | $\langle 0, 0, 0, 2, 0, 0 \rangle$ | $x_4^2$       | $3 \cdot 2 = 6$ |
| $t^2$          | $\langle 0, 4, 0, \ldots \rangle$  | $x_{2}^{4}$   | 3               |
| f              | $\langle 0, 4, 0, \ldots \rangle$  | $x_{2}^{4}$   | 6               |
| $r, r^2$       | $\langle2,0,2,0,\dots\rangle$      | $x_1^2 x_3^2$ | $4 \cdot 2 = 8$ |
| Всего          |                                    |               | 24              |

### Цикловой индекс:

$$P(O:V) = \frac{1}{24} \left[ x_1^8 + 6x_4^2 + 9x_2^4 + 8x_1^2 x_3^2 \right].$$

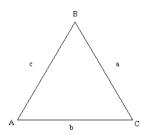
# Задача (перечисление графов).

Сколько имеется неориентированных непомеченных графов (без петель и кратных рёбер) с тремя вершинами?

**Решение.** T — стороны треугольника, N = 3.

$$\mathbf{G}\cong S_3$$
 — все перестановки трёх вершин,

$$n = 3! = 6.$$



Графы неориентированные — r=2 — пометки «есть ребро/нет ребра»

$$S_3 = \{e, 2 * (ABC), 3 * ((A)(BC))\}$$

# Перечисление графов...

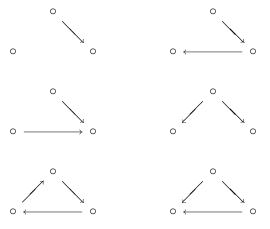
$$S_3 = \left\{ e, 2 * \underbrace{(ABC)}_{g_1}, 3 * \underbrace{((A)(BC))}_{g_2} \right\}.$$

| Элемент группы $g$ | Type(g)                   | w(g)          | #w(g) |
|--------------------|---------------------------|---------------|-------|
| e = (a)(b)(c)      | $\langle 3, 0, 0 \rangle$ | $x_1^3$       | 1     |
| $g_1 = (abc)$      | $\langle 0, 0, 1 \rangle$ | $x_3^1$       | 2     |
| $g_2 = (a)(bc)$    | $\langle 1, 1, 0 \rangle$ | $x_1^1 x_2^1$ | 3     |
| Всего              |                           |               | 6     |

$$P(x_1, x_2, x_3) = \frac{1}{6} [x_1^3 + 2x_3^1 + 3x_1^1 x_2^1], P(2, 2, 2) = 4.$$

# Перечисление графов...

### Перечислим ориентированные: пустой граф и графы



— всего 7 графов неориентированных — 4.

# Цикловые индексы самодействия и действия O на элементы куба

$$\begin{split} P(S_n) &= \sum_{\stackrel{(j_1,\ldots,j_n)\in\mathbb{N}_0^n}{1j_1+2j_2+\ldots+nj_n=n}} \frac{x_1^{j_1}x_2^{j_2}\ldots x_n^{j_n}}{(1^{j_1}j_1!)(2^{j_2}j_2!)\ldots(n^{j_n}j_n!)}\,,\\ P(Z_n) &= \frac{1}{n}\sum_{d\mid n}\varphi(d)x_d^{n/d}\,,\quad \varphi-\text{функция Эйлера},\\ P(D_n) &= \frac{1}{2}P(Z_n) + \left\{\begin{array}{l} \frac{1}{2}x_1x_2^{(n-1)/2}, & \text{если $n$ нечётно},\\ \frac{1}{4}\left(x_2^{n/2}+x_1^2x_2^{(n-2)/2}\right), & \text{если $n$ чётно},\\ \end{array}\right.\\ P(O:V) &= \frac{1}{24}\left[x_1^8+9x_2^4+6x_4^2+6x_4^2+8x_1^2x_3^2\right] \text{ (на вершины)},\\ P(O:E) &= \frac{1}{24}\left[x_1^{12}+3x_2^6+8x_3^4+6x_4^2+8x_1^2x_2^5+6x_4^3\right] \text{ (на рёбра)},\\ P(O:F) &= \frac{1}{24}\left[x_1^6+3x_1^2x_2^2+6x_1^2x_4+6x_2^3+8x_3^2\right] \text{ (на грани)}. \end{split}$$

#### Разделы

- Действие группы на множестве
- Применение леммы Бёрнсайда для решения комбинаторных задач
- Применение теоремы Пойа для решения комбинаторных задач
- Задачи с решениями
- Что надо знать

### Теорема Пойа

К множеству T, |T|=N, группе  ${\bf G}$ , |G|=n и действию  ${\bf G}$  : T добавим множество  $R=\{c_1,\ldots,c_r\}$ , меток («красок»), и совокупность функций  $F=R^T$  — приписывания меток (раскрашиваний) элементам T.

 ${f G}$ , действуя на T, действует и на  $R^T-\circ:R^T imes G\stackrel{\circ}{=} R^T.$  Придадим вес элементам  $R\colon w(c_i)=y_i,\ i=\overline{1,r}.$ 

### **Теорема** (Редфилда-Пойа; 1927, 1937)

Цикловой индекс действия группы  ${f G}$  на  $R^T$  есть

$$P(\mathbf{G} : \mathbf{R}^T) = P(\mathbf{G} : T, x_1, \dots, x_N) \Big|_{x_k = y_1^k + \dots + y_r^k, k = \overline{1, N}}$$

### Теорема Пойа...

### Следствие

Если все веса выбраны одинаковыми ( $y_1 = \dots y_r = 1$ ), то  $x_1 = \dots x_N = r$  и W(F) — число классов эквивалентности

$$C(\mathbf{G} : R^T) = C(\mathbf{G} : T) = P(\mathbf{G} : T, r, \dots, r).$$

— лемма Бёрнсайда.

Что можно определить (подсчитать) с помощью:

леммы Бёрнсайда — общее число неэквивалентных разметок (раскрасок);

теорема Редфилда-Пойа — число разметок данного типа, т.е. содержащих данное количество элементов конкретного цвета.

### Д. Пойа



Дьёрдь Пойа (Pólya György, 1887–1985)
— венгерский, швейцарский и американский математик.
После окончания Будапештского университета работал в Высшей технической школе в Цюрихе, а с 1940 г. — в Стэнфордском университете (США).

Внёс заметный вклад в теорию чисел, функциональный анализ, математическую статистику (распределение Пойа) и комбинаторику (теорема Редфилда-Пойа). Пойа много работал со школьными учителями математики и внёс большой вклад в популяризацию науки.

# Усложним задачу об ожерельях N=5, r=3

Задача (об ожерельях: 5 бусин 3-х цветов). Цвета — красный, синий, зелёный. Ожерелья одинаковы, если одно получается из другого поворотом и/или переворотом. Сколько имеется ожерелий, имеющих ровно 2 красные бусины?

Решение. Было:  $\mathbf{G}=D_5$ , цикловой индекс  $P=\frac{1}{10}\left[x_1^5+4x_5+5x_1x_2^2\right]$ , всего ожерелий  $P(3,\ldots,3)=39$  (только поворот -51).  $x_1=y_1+y_2+y_3, \ \ x_2=y_1^2+y_2^2+y_3^2, \ \ldots, \ \ x_5=y_1^5+y_2^5+y_3^5.$   $\begin{cases} w(\text{красный}) &=y_1,\\ w(\text{синий}) &=y_2,\\ w(\text{зелёный}) &=y_3, \end{cases} \Rightarrow \begin{cases} y_1=y,\\ y_2=y_3=1, \end{cases} \Rightarrow \begin{cases} x_1 &=y+2,\\ x_2 &=y^2+2,\\ \ldots,\\ x_5 &=y^5+2. \end{cases}$ 

# Задача об ожерельях: 5 бусин 3-х цветов...

$$P(x_1, \dots, x_5) = \frac{1}{10} \left[ x_1^5 + 4x_5 + 5x_1 x_2^2 \right]$$
$$x_k \mapsto y^k + 2, \ k = \overline{1, 5}; \quad P(y) = \sum_{i=1}^5 u_i y^i, \ u_2 = ?$$

$$P(y) = \frac{1}{10} \left[ u_0 + u_1 y + \frac{u_2 y^2 + \dots + u_5 y^5}{1} \right] =$$

$$= \frac{1}{10} \left[ (y+2)^5 + 4(y^5 + 2) + 5(y+2)(y^2 + 2)^2 \right] =$$

$$= \frac{1}{10} \left[ \dots + C_5^2 2^3 y^2 + \dots + 5(y+2)(y^4 + 4y^2 + 4) \right] =$$

$$= \frac{1}{10} \left[ \dots + (10 \cdot 8 + 5 \cdot 2 \cdot 4)y^2 + \dots \right].$$

$$u_2 = \frac{80 + 40}{10} = 12.$$

# Задача о раскраске куба

Вершины куба помечают красными и синим цветами. Сколько существует

- 🚺 разнопомеченных кубов;
- 2 кубов, у которых половина вершины красные;
- 🔞 кубов, у которых не более 2-х красных вершин?

**Решение.** Цикловой индекс действия группы O на вершины куба 1

$$P(O:_{\alpha}V) = \frac{1}{24} \left[ x_1^8 + 6x_4^2 + 9x_2^4 + 8x_1^2 x_3^2 \right].$$

Число разнопомеченных кубов —

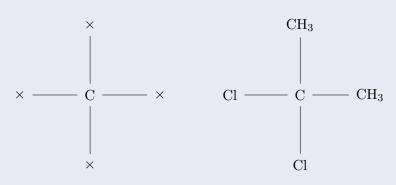
$$\#Col(3) = P|_{x_1 = \dots = x_8 = 2} = \frac{552}{24} = 23.$$

Задача о раскраске куба... 
$$\left(\frac{1}{24}\left[x_1^8+6x_4^2+9x_2^4+8x_1^2x_3^2\right]\right)$$

$$w$$
 (красный)  $=y, \ w$  (синий)  $=1, \ x_k=y^k+1, \ k=\overline{1,8}$ : 
$$\#Col(4,4)=\frac{1}{24}\big[\,(y+1)^8+9\cdot(y^2+1)^4+6\cdot(y^4+1)^2+\\ +8\cdot(y+1)^2(y^3+1)^2\,\big]=$$
  $=\frac{1}{24}\big[\ldots+28y^2+C_8^4y^4+\ldots+9(\ldots 4y^2+6y^4+\ldots)+\\ \ldots+6\cdot 2y^4\ldots+8(\ldots+2y+y^2+\ldots)(\ldots+2y^3+\ldots)\,\big].$   $u_4=\frac{1}{24}\big[\,70+9\cdot 6+6\cdot 2+8\cdot 2\cdot 2\,\big]=\frac{168}{24}=7.$ 

### Вращение тетраэдра

# Задача. Рассмотрим молекулы 4-х валентного углерода С:



где на на месте  $\times$  могут находится  $\mathrm{CH}_3$  (метил),  $\mathrm{C}_2\mathrm{H}_5$  (этил),  $\mathrm{H}$  (водород) или  $\mathrm{Cl}$  (хлор). Например — дихлорбутан.

### Вращение тетраэдра...

# (продолжение)

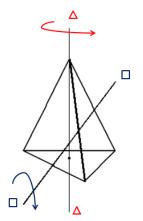
#### Найти

- **1** общее число M всех молекул;
- $oldsymbol{2}$  число молекул с  $H=0,\,1,\,2,\,3,\,4$  атомами водорода.

### Группа вращения тетраэдра

Решение. Какая группа действует и на каком множестве?

$$T = \langle t, f \rangle, t^3 = f^2 = e$$
, где



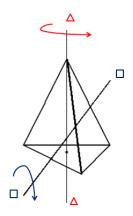
t — вращение на  $120^\circ$  вокруг оси, проходящей через вершину и центр тетраэдра ( $\Delta$ — $\Delta$ ); f — вращение на  $180^\circ$  вокруг оси, проходящей через центры двух противоположных рёбер ( $\Box$ — $\Box$ ).

$$P(T:_{\alpha}V) = \frac{1}{12} \left[ x_1^4 + 8x_1x_3 + 3x_2^2 \right].$$

Почему перед  $x_1x_3$  коэффициент 8, ведь осей  $\triangle - \triangle$  всего 4?

### Группа вращения тетраэдра...

# Цикловой индекс действия группы T на вершины тетраэдра —



| g        | Type(g)                      | w(g)        | Кол-во          |
|----------|------------------------------|-------------|-----------------|
| e        | $\langle 4,0,0,0 \rangle$    | $x_1^4$     | 1               |
| $t, t^2$ | $\langle 1, 0, 1, 0 \rangle$ | $x_1x_3$    | $4 \cdot 2 = 8$ |
| f        | $\langle 0, 2, 0, 0 \rangle$ | $x_{2}^{2}$ | 3               |

$$P(x_1, \ldots, x_4) = \frac{1}{12} \left[ x_1^4 + 8x_1x_3 + 3x_2^2 \right]$$

### Вращение тетраэдра

f 0 Имеем N=4, действие T на вершины тетраэдра:

$$P(x_1, \ldots, x_4) = \frac{1}{12} [x_1^4 + 8x_1x_3 + 3x_2^2].$$

Всего молекул (4 радикала) —

$$M = P(4,...,4) = \frac{1}{12} \left[ 4^4 + 8 \cdot 4 \cdot 4 + 3 \cdot 4^2 \right] = \frac{16 \cdot 27}{12} = 36.$$

② Веса:  $y_1 = H$ ,  $y_2 = y_3 = y_4 = 1$ . Подстановка в P:  $x_k = H^k + 3$ ,  $k = \overline{1,4}$ .

### Вращение тетраэдра...

$$P(x_1, x_2, x_3) = \frac{1}{12} \left[ x_1^4 + 8x_1x_3 + 3x_2^2 \right].$$

Проводим подстаковку —  $x_k \mapsto H^k + 3, \ k = 1, 2, 3.$ 

$$P(H) = \frac{1}{12} \left[ (H+3)^4 + 8(H+3)(H^3+3) + 3(H^2+3)^2 \right] =$$

$$= \frac{1}{12} \left[ (H^4 + 4 \cdot H^3 \cdot 3 + 6 \cdot H^2 \cdot 9 + 4 \cdot H \cdot 27 + 81) + 8(H^4 + 3H^3 + 3H + 9) + 3(H^4 + 6H^2 + 9) \right] =$$

$$= 1 \cdot H^4 + 3 \cdot H^3 + 6 \cdot H^2 + 11 \cdot H + 15.$$

Итого имеется молекул с числом атома водорода: с 4-мя — 1 шт., с 3-мя — 3 шт., с 2-мя — 6 шт., с 1-м — 11 шт., без атомов водорода — 15 шт., всего — 1+3+6+11+15=36.

Задачи с решениями

### Разделы

- Действие группы на множестве
- Применение леммы Бёрнсайда для решения комбинаторных задач
- Применение теоремы Пойа для решения комбинаторных задач
- Задачи с решениями
- Что надо знать

Задачи с решениями

### Задача ТП-1

Каждое вращение куба переставляет его грани, т.е. задаёт группу перестановок.

Определить стабилизатор некоторой грани в этой группе.

#### Решение.

Пусть a — грань куба.

Перестановки, оставляющие неподвижной грань суть  $e,\,t,\,t^2,\,t^3$ , где t — вращение на  $90^\circ$  вокруг оси, проходящей через две противоположные грани.

Таким образом,  $\operatorname{Stab}(a) = \langle t \rangle \cong Z_4$ .

### Задача ТП-2

Найти цикловой индекс самодействия группы симметрии правильного треугольника.

**Решение.** Группа симметрии правильного треугольника = группа диэдра  $D_3\cong S_3$ ,  $|D_3|=6$ .

$$D_3 = \langle t, s \rangle, t^3 = s^2 = e, t^2 s = st,$$

t — вращение на  $120^{\circ}$  вокруг центра,

s — отражение относительно оси симметрии.

| $\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;$ | Type(g)                   | w(g)     | кол-во |
|----------------------------------------------------------------------------|---------------------------|----------|--------|
| e = (1)(2)(3)                                                              | $\langle 3, 0, 0 \rangle$ | $x_1^3$  | 1      |
| $t = (123), t^2 = (132)$                                                   | $\langle 0, 0, 1 \rangle$ | $x_3$    | 2      |
| $s = (1)(23), st, st^2$                                                    | $\langle 1, 1, 0 \rangle$ | $x_1x_2$ | 3      |

Цикловой индекс  $P_{S_3} = \frac{1}{6} \left[ x_1^3 + 2x_3 + 3x_1x_2 \right].$ 

### Задача ТП-3

# Найти цикловой индекс транзитивного самодействия группы $Z_6.$

**Решение.** Обозначим последовательно вершины правильного шестиугольника буквами I,A,S,E,C,R.

$$Z_6 = \langle t 
angle$$
,  $t^6 = e,\, t$  — поворот на  $60^\circ.$ 

| Type(g)                            | w(g)                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                        |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\langle 6, 0, 0, 0, 0, 0 \rangle$ | $x_1^6$                                                                                                                                                                                                                                            | R I                                                                                                                                                                                                                                    |
| $\langle 0, 0, 0, 0, 0, 1 \rangle$ | $x_6$                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                        |
| $\langle 0, 0, 2, 0, 0, 0 \rangle$ | $x_3^2$                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                        |
| $\langle 0, 3, 0, 0, 0, 0 \rangle$ | $x_2^3$                                                                                                                                                                                                                                            | \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\                                                                                                                                                                                                 |
| $\langle 0, 0, 2, 0, 0, 0 \rangle$ | $x_3^2$                                                                                                                                                                                                                                            | \ /                                                                                                                                                                                                                                    |
| $\langle 0, 0, 0, 0, 0, 1 \rangle$ | $x_6$                                                                                                                                                                                                                                              | E S                                                                                                                                                                                                                                    |
|                                    | $\begin{array}{c} \langle  6,  0,  0,  0,  0,  0  \rangle \\ \langle  0,  0,  0,  0,  0,  1  \rangle \\ \langle  0,  0,  2,  0,  0,  0  \rangle \\ \langle  0,  3,  0,  0,  0,  0  \rangle \\ \langle  0,  0,  2,  0,  0,  0  \rangle \end{array}$ | $ \begin{array}{c cccc} \langle 6,0,0,0,0,0 \rangle & x_1^6 \\ \langle 0,0,0,0,0,1 \rangle & x_6 \\ \langle 0,0,2,0,0,0 \rangle & x_2^3 \\ \langle 0,3,0,0,0,0 \rangle & x_2^3 \\ \langle 0,0,2,0,0,0 \rangle & x_3^3 \\ \end{array} $ |

$$P_{Z_6} \, = \, \frac{1}{6} \left[ \, x_1^6 + x_2^3 + 2 x_3^2 + 2 x_6 \, \right] \, = \, \frac{1}{6} \sum_{d \mid 6} \varphi(d) x_d^{6/d}.$$

#### Задача Т<u>П-4</u>

Определить число различных раскрасок правильной четырёхугольной пирамиды П в 3 цвета.

Решение. Занумеруем последовательно боковые грани П числами  $1, \ldots 4$ , а основание — 5.

$$\mathbf{G}\,\cong\,Z_4\,=\,\langle\,t\,
angle,\;t$$
 — вращение на  $\,90^\circ.$ 

$$P(3,\ldots,3) = \frac{3^5 + 2 \cdot 3^2 + 3^3}{4} = \frac{9 \cdot (27 + 2 + 3)}{4} = \frac{9 \cdot 32}{4} = 72$$

### Задача ТП-5

Сколькими геометрически различными способами три абсолютно одинаковые мухи могут усесться в вершинах правильного семиугольника, нарисованного на листе бумаги?

**Решение.** Множество T — вершины семиугольника, на которые действует группа  $Z_7 = \langle \, t \, \rangle, \ t^7 = e.$ 

| Элемент $g \in Z_7$   | Type(g)                           | w(g)    | кол-во |
|-----------------------|-----------------------------------|---------|--------|
| $\overline{e}$        | $\langle 7, 0, \ldots \rangle$    | $x_1^7$ | 1      |
| $t, t^2, \ldots, t^6$ | $\langle 0, \ldots, 0, 1 \rangle$ | $x_7$   | 6      |
| Всего                 |                                   |         | 7      |

Цикловой индекс самодействия  $\mathbb{Z}_7$ :

$$P_{Z_7}(x_1, \ldots, x_7) = \frac{1}{7} \left[ x_1^7 + 6x_7 \right] = \frac{1}{7} \sum_{d|T} \varphi(d) x_d^{7/d}.$$

Задачи с решениями

### Задача ТП-5...

Число различных раскрасок в 2 цвета (муха есть/нет), при условии окраски ровно 3-х вершин из 7-и есть коэффициент  $u_3$  при  $y^3$  после подстановки  $x_1\mapsto y+1,\; x_7\mapsto y^7+1$  в  $P_{Z_7}$ :

$$P(y) = \frac{1}{7} [(y+1)^7 + 6(y+1)] = \frac{1}{7} [\dots + C_7^3 y^3 + \dots].$$

$$u_3 = \frac{7!}{7 \cdot 3! \cdot 4!} = \frac{5 \cdot 6}{2 \cdot 3} = 5.$$

Задачи с решениями

### Задача ТП-6

Боковые грани правильной шестиугольной пирамиды окрашиваются в красный, синий и зелёный цвета.
Определить

- (а) число различных 2-х и 3-х цветных пирамид;
- (б) число пирамид с одной красной гранью;
- (в) число пирамид, у которых не менее трёх красных граней.

**Решение.** Имеем транзитивное самодействие  $Z_6$ .

(а) Общее число пирамид.

$$P(Z_6) = \frac{1}{6} \sum_{d|6} \varphi(d) x_d^{6/d} \equiv$$

### Задача ТП-6...

$$#Col(2) = P(2, ..., 2) =$$

$$= \frac{1}{6} [2^6 + 2^3 + 2 \cdot 2^2 + 2 \cdot 2] = \frac{4 \cdot 21}{6} = 14.$$

$$#Col(3) = P(3, ..., 3) =$$

$$= \frac{1}{6} [3^6 + 3^3 + 2 \cdot 3^2 + 2 \cdot 3] = \frac{780}{6} = 130.$$

Задачи с решениями

Задача ТП-6... 
$$P_{Z_6}(x_1,\ldots,x_6) = \frac{1}{6} \left[ x_1^6 + x_2^3 + 2x_3^2 + 2x_6 \right]$$

(б, в) Число пирамид с 1-й и  $3 \leqslant$  красными гранями.

Полагаем  $y_1 = y$ ,  $y_2 = y_3 = 1$  (следим только за красными гранями),  $x_1 = y + 2$ ,  $x_2 = y^2 + 2$ ,  $x_3 = y^3 + 2$ .

$$P(y) = \frac{1}{6} \left[ (y+2)^6 + (y^2+2)^3 + 2(y^3+2)^2 + 2(y^6+2) \right] =$$

$$= \frac{1}{6} \left[ u_0 + u_1 y + u_2 y^2 + \dots + u_6 y^6 \right] =$$

$$= \frac{1}{6} \left[ \left( 2^6 + 2^3 + 2^3 + 4 \right) + 6 \cdot 2^5 y + (16 \cdot 15 + 12) y^2 + \dots \right].$$

$$u_0 = 84/6 = 14, \quad u_1 = 2^5 = 32, \quad u_2 = 252/6 = 42.$$

Число пирамид с:

- (б) одной красной гранью  $u_1 = 32$ ,
- (в) не менее, чем 3-я красными гранями —

$$\#Col(3) - (u_0 + u_1 + u_2) = 130 - (14 + 32 + 42) = 130 - 88 = 42.$$

Что надо знать

### Разделы

- Действие группы на множестве
- Применение леммы Бёрнсайда для решения комбинаторных задач
- Применение теоремы Пойа для решения комбинаторных задач
- Задачи с решениями
- Что надо знать

- Действие группы на множестве: два определения. g-циклы, тип перестановки. Орбиты. Неподвижные точки группы преобразований: фиксатор и стабилизатор. Лемма Бёрнсайда.
- Группы вращений платоновых тел. Примеры.
- Применение леммы Бёрнсайда для решения комбинаторных задач. Примеры.
- Действие группы вращений куба на его элементы.
- Цикловой индекс: определение и свойства. Вычисление числа орбит через цикловой индекс. Примеры.
- Решения комбинаторной задачи об ожерельях.
- Теорема Редфилда-Пойа и её применение для решения комбинаторных задач. Примеры.