Nonlinear dimensionality reduction

Victor Kitov

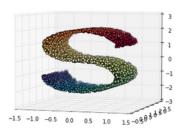
v v kit ov@yandex ru

Advantages of dimensionality reduction

- Reduce operational time and storage costs.
- Remove multi-collinearity in features.
- Visualize in 2D or 3D.

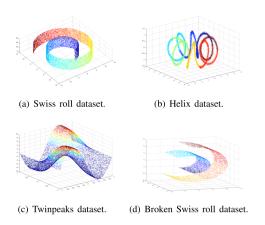
Non-linear dimensionality reduction

- Based on assumption that original data $x \in \mathbb{R}^D$ is distributed compactly on non-linear surface with dimensionality d < D.
- Let $y \in \mathbb{R}^d$ denote the coordinates of x on the surface.
- d is usually unknown.
- Sample dataset:



• Linear dimensionality reduction techniques will fail here.

Typical datasets for dimensionality reduction evaluation



Comment: true datasets have much more dimensions, more complex structure, errors, outliers, etc.

Categorization

Non-linear approaches of dimensionality reduction:

- preserving global properties
 - kernel PCA, autoencoders, MDS, ISOMAP, diffusion maps, MVU
- preserving local properties
 - LLE, LTSA
- global alignment of local linear models (not considered here)

Nonlinear dimensionality reduction - Victor Kitov Global methods

Table of Contents

- Global methods
- 2 Local methods

Multi-dimensional scaling

Multi-dimensional scaling

Map $x \rightarrow y$ preserving distances as much as possible.

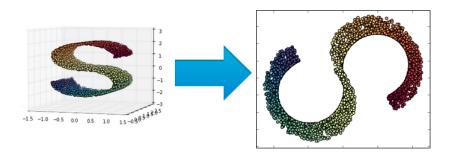
- Approaches:
 - absolute difference

$$\sum_{i,j} (\|x_i - x_j\| - \|y_i - y_j\|)^2 \to \min_{Y}$$

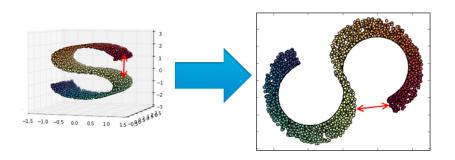
• relative difference (more attention to small distances)

$$\sum_{i,j} \frac{(\|x_i - x_j\| - \|y_i - y_j\|)^2}{\|x_i - x_j\|^2} \to \min_{Y}$$

Example



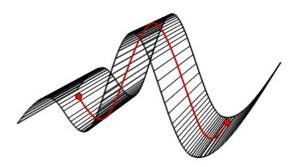
Analysis



Issue: small $||x_i - x_j||$ should not always imply small $||y_i - y_j||$.

Solution

Isomap: Map $x \to y$ preserving correspondence between distance in target space and geodesic distance along the surface in original space.



Isomap

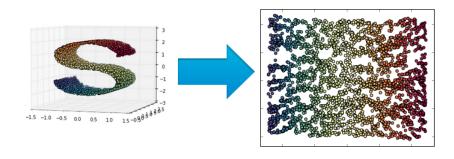
Isomap algorithm

- Geodesic distance calculation:
 - \bullet for each x_n find its K nearest neighbours
 - build the pairwise distance matrix, filling distance between samples and their nearest neighbours.
 - calculate all pairwise distances using shortest-path algorithm of Dijkstra or Floyd.
- ② Apply MDS to match $||x_i x_j||_G$ and $||y_i y_j||$, where $||\cdot||_G$ is geodesic distance.

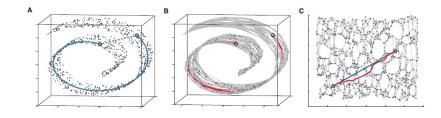
Issues of Isomap

- Noisy observations between distant parts of surfaces may make distant parts close
- Solutions:
 - remove observations with large total flows through them
 - remove nearest neighbours that violate local linearity
- Selection of K:
 - if too small, then poor approximation of geodesic distance
 - if too large, then increases chance of "short-circuiting" through noisy observations.

Example of ISOMAP



Example of ISOMAP¹



¹Picture source.

Maximum variance unfolding

Maximum variance unfolding

Maximally unfold the transformations, preserving local geometry of data.

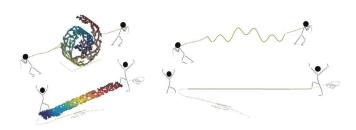
```
initialize neighbourhood graph G with nodes being the samples x_1, x_2, ... x_N for each x_n: for k=1,2,...K: find k-th nearest neighbour x_{n_k} to x_n add a link to G between x_n and x_{n_k}
```

solve the optimization problem:

$$\sum_{i,j} ||y_i - y_j||^2 \to \max \text{ subject to: } ||y_i - y_j||^2 = ||x_i - x_j||^2 \ \forall (i,j) \in G$$

Issue: noise sample may "short-circuit" leading to redundant constraint, which may prevent manifold unfolding.

Maximum variance unfolding demo²



- Assumption: The manifold is isometric to a connected subset of Euclidean space.
- Isometry (informally) is a smooth invertible mapping that looks locally like a rotation plus translation.

²Picture source.

Kernel PCA

- Like PCA, but input space is expanded with kernels
- Easy computation of projections of new points
- Issue: kernel selection.
 - linear (reduces to ordinary PCA)
 - Gaussian
 - polynomial

Diffusion maps

- Construct proximity graph
 - nodes: observations
 - edge weight between x_i and x_i :

$$w_{ij}=e^{-\frac{\left\|x_i-x_j\right\|^2}{2\sigma^2}}$$

2 for each x_i outgoing probabilities set to normalized weights:

$$p_{ij}^{(1)} = \frac{w_{ij}}{\sum_{k} w_{ik}} \tag{1}$$

- **3** random walk with probabilities $p_{ij}^{(1)}$ stored in matrix $P^{(1)}$ is assumed.
- based on random walk assumption, the probability of walking from x_i to x_j after T steps is:

$$p_{ij}^{(T)} = \{ \underbrace{P^{(1)} \times ... \times P^{(1)}}_{18/32} \}_{ij}$$

Diffusion maps

• Finally MDS is applied to match $||y_i - y_j||$ to diffusion distance:

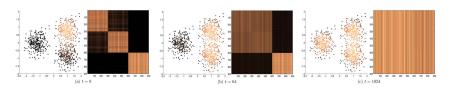
$$D^{T}(x_{i}, x_{j}) = \sqrt{\sum_{k} \frac{(p_{ik}^{(T)} - p_{jk}^{(T)})^{2}}{p_{k}}}$$

where $[p_1, p_2, ...p_N]$ is stationary distribution for Markov process with matrix $P^{(1)}$.

- p_i measures the probability to be at object i after big fixed number of trials.
- High p_k means that object k is central, connected to many objects.
- Normalization by p_k : connection to distant isolated objects is more important.

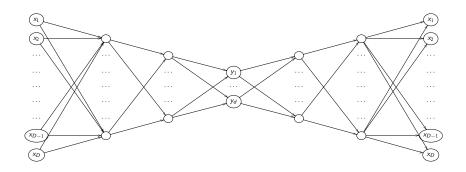
Discussion

- Benefit: distance between points is based on multiple paths through the graph - more robust to noise.
- Selection of T is important:
 - too small: method from global becomes local, matching distances between neighbouring points
 - too big: all points become equally similar
 - Example: 3 clusters with transition probabilities set with (1), color indicates p(i|j) after t steps.



Link to picture source

Autoencoders



Autoencoders

- feed-forward neural network, tranined to reproduce input with MSE loss.
- D input and D output nodes
- d nodes in the central layer
- $x \in \mathbb{R}^D$ is transformed to $y \in \mathbb{R}^d$.
- User-defined number of layers and nodes

• Advantages:

ullet can transform arbitrary x to lower-dimensional space

Disadvantages:

- slow convergence
 - may train layer by layer, then finetune all.
- optimization gets stuck in local optima
- many parameters (weights)
 - especially for big D and several layers.

Nonlinear dimensionality reduction - Victor Kitov

Local methods

Table of Contents

- Global methods
- 2 Local methods

Local linear embedding

Local linear embedding

Method preserves reconstruction weights of objects through their nearest neighbors.

INPUT:

training sample $x_1, x_2, ... x_N$ number of neighbours K

ALGORITHM:

for each x_i :

find its K nearest neighbours: $x_{i(1)}, x_{i(2)}, ... x_{i(K)}$

find weights to reconstruct x_i using its neighbours:

$$x_i \approx \sum_{k=1}^K w_{ik} x_{i(k)}$$

solve optimization problem: $\sum_{n=1}^{N} (y_i - \sum_{k=1}^{K} w_{ik} y_{ik})^2 \rightarrow \min_{Y}$

OUTPUT: reduced space representation: $y_1, y_2, ... y_N$.

Weights

For
$$i = 1, 2...N$$
:

$$\begin{cases} \left\| w_{ik} x_{i(k)} - x_i \right\|^2 \to \min_{w_{i1}, \dots w_{iK}} \\ \sum_{j=1}^K w_{ij} = 1 \end{cases}$$

Laplacian eigenmaps

Laplacian eigenmaps

Forces distances of points with nearest neighbours to be smaller.

INPUT:

training sample $x_1, x_2, ... x_N$ number of neighbours K

ALGORITHM:

for each x_i :

find its K nearest neighbours: $x_{i(1)}, x_{i(2)}, ... x_{i(K)}$

for each nearest neighbour j=i(1), i(2), ...i(K):

calculate distance-based weights: $w_{ii} = e^{-\frac{\left\|x_i - x_j\right\|^2}{2\sigma^2}}$

solve optimization problem:

$$\sum_{i=1}^{N} \sum_{j \in \{j(1),...,j(K)\}}^{i} w_{ij} (y_i - y_j)^2 \to \min_{Y}$$

OUTPUT: reduced space representation: $y_1, y_2, ... y_N$.

Comments on local methods

- short-circuiting affects only local points in space
- local method, relying on K-NN => prone to curse of dimensionality
- prone to overfitting on outliers (when they become nearest neighbors)

Properties

Technique	Convex	Parameters	Computational	Memory
PCA	yes	none	$O(D^3)$	$O(D^2)$
MDS	yes	none	$O(N^3)$	$O(N^2)$
Isomap	yes	K	$O(N^3)$	$O(N^2)$
MVU	yes	K	$O((NK)^3)$	$O((NK)^3)$
Kernel PCA	yes	kernel	$O(N^3)$	$O(N^2)$
Diffusion maps	yes	σ , T	$O(N^3)$	$O(N^2)$
Autoencoders	no	network shape	O(INW)	O(W)
LLE	yes	K	$O(pN^2)$	$O(pN^2)$
Laplacian eigenmaps	yes	K, σ	$O(pN^2)$	$O(pN^2)$

D - input dimension, N - sample size, K - number of nearest neighbors, σ - smoothing parameter of Gaussian kernel, W number of weights in neural network, I - number of epochs (passes through whole training set), p - the fraction of non-zero entries in the weight matrix.

Comment: PCA is the most efficient, then come local methods (italic) and finally global methods.

Global vs. local methods

- Global methods try to preserve the whole geometry of data
 - less efficient
 - find "overall picture"
 - noise points can spoil whole picture
- Local methods try to preserve only local data geometry
 - more efficient
 - find "locally correct pictures", then join them
 - locally affected by noise points

Comments

- Problem of transforming new previously unobserved samples.
 - direct for PCA, Kernel PCA, autoencoders
 - only approximations possible for other methods.
 - suppose for new x its nearest neighbbours form training set are: $x_{i(1)},...x_{i(K)}$

•
$$x \approx \sum_{k=1}^{K} w_k x_{i(k)}$$
, so $y(x) \approx \sum_{k=1}^{K} w_k y(x_{i(k)})$

- Selection of target dimensionality d:
 - Cross-validation of the original task (e.g. classification)
 - How many components of local PCA explain most of the variance?
 - The growth rate of number of objects falling inside a growing hypersphere with center $x: \#\{x_i : \|x_i x\| \le R\}$
 - for d-dimensional manifold it should grow $\propto R^d$.
 - etc.

Experiment

- L.J.P. van der Maaten, E.O. Postma, H.J. van den Herik.
 Dimensionality Reduction: A Comparative Review. Working paper. 2008.
 - Extensive comparison of different dimensionality reduction methods
 - accuracy of 1 nearest neighbour in reduced space.
 - Non-linear techniques perform better than PCA on simulated data
 - PCA wins most of the time on real data
 - Problems:
 - global methods: short-circuiting
 - nearest neighbours based methods: curse of dimensionality, overfitting to outliers
 - unstable optimization for local methods: they reduce to eigenproblems, frequently $\lambda_{max}/\lambda_{min}\gg 1$.
 - suboptimal local optima for autoencoders.

Dangers of dimensionality reduction

