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Advantages of dimensionality reduction

@ Reduce operational time and storage costs.
@ Remove multi-collinearity in features.
@ Visualize in 2D or 3D.

2/32



Nonlinear dimensionality reduction - Victor Kitov

Non-linear dimensionality reduction

@ Based on assumption that original data x € RP is distributed
compactly on non-linear surface with dimensionality d < D.

o Let y € R? denote the coordinates of x on the surface.

@ d is usually unknown.

@ Sample dataset:

=15 -10 -05 00 05 1 15-43"54

@ Linear dimensionality reduction techniques will fail here.
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Typical datasets for dimensionality reduction evaluation

(a) Swiss roll dataset. (b) Helix dataset.

-~

(c) Twinpeaks dataset. (d) Broken Swiss roll dataset.

Comment: true datasets have much more dimensions, more

complex structure, errors, outliers, etc.
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Categorization

Non-linear approaches of dimensionality reduction:
@ preserving global properties

o kernel PCA, autoencoders, MDS, ISOMAP, diffusion maps,
MVU

@ preserving local properties
o LLE, LTSA

@ global alignment of local linear models (not considered here)
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Table of Contents

@ Global methods

6/32



Nonlinear dimensionality reduction - Victor Kitov
Global methods

Multi-dimensional scaling

Multi-dimensional scaling

Map x — y preserving distances as much as possible.

@ Approaches:

e absolute difference
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o relative difference (more attention to small distances)
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Example

A5 10 05 00 o5 1g
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Analysis

3 T
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Issue: small ||x; — x;|| should not always imply small |ly; — y;]|.
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Global methods

Solution

Isomap: Map x — y preserving correspondence between distance

in target space and geodesic distance along the surface in original
space.
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Isomap

Isomap algorithm

@ Geodesic distance calculation:

@ for each x, find its K nearest neighbours
@ build the pairwise distance matrix, filling distance between
samples and their nearest neighbours.

© calculate all pairwise distances using shortest-path algorithm of
Dijkstra or Floyd.

Q Apply MDS to match ||x; — x;||- and [ly; — y;
geodesic distance.

, where ||-||¢ is
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Issues of Isomap

@ Noisy observations between distant parts of surfaces may make
distant parts close

@ Solutions:

e remove observations with large total flows through them
e remove nearest neighbours that violate local linearity

@ Selection of K:

e if too small, then poor approximation of geodesic distance
o if too large, then increases chance of “short-circuiting” through
noisy observations.

12/32



Nonlinear dimensionality reduction - Victor Kitov
Global methods

Example of ISOMAP
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Global methods

Example of ISOMAP!

IPicture source.
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Maximum variance unfolding

Maximum variance unfolding

Maximally unfold the transformations, preserving local geometry of
data.

initialize neighbourhood graph G with nodes being
the samples xi, x2,...xn

for each x,:
for k=1,2,..K:
find k-th nearest neighbour x, to x,
add a link to G between x, and x,,

solve the optimization problem:
>y = yil[? = max subject to: ||y — y|* = |Ix — x| V(i,j) € G

Issue: noise sample may “short-circuit” leading to redundant

constraint, which may prevent manifold unfolding.
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Maximum variance unfolding demo?

@ Assumption: The manifold is isometric to a connected subset
of Euclidean space.

@ Isometry (informally) is a smooth invertible mapping that
looks locally like a rotation plus translation.

2Picture source.
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Kernel PCA

o Like PCA, but input space is expanded with kernels
@ Easy computation of projections of new points
@ Issue: kernel selection.

o linear (reduces to ordinary PCA)
o Gaussian
e polynomial
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Diffusion maps

© Construct proximity graph
e nodes: observations

o edge weight between x; and x;:

||X’

—x;
wij = e 202

[

@ for each x; outgoing probabilities set to normalized weights:
(1) Wij
Py = 1
J >k Wik ()
1)

ji/ stored in matrix P js

© random walk with probabilities p
assumed.
© based on random walk assumption, the probability of walking

from x; to x; after T steps is:

pI(J.T) ={PW x . x P(l)},-j

T times
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Diffusion maps

e Finally MDS is applied to match ||y; — y;|| to diffusion
distance:

(P(kT) - (kT))z
DT(Xiv XJ) = Z ’ ’

P Pk
where [p1, p2, ...pn] is stationary distribution for Markov
process with matrix P(1).

@ p; measures the probability to be at object i after big fixed
number of trials.

@ High p, means that object k is central, connected to many
objects.

@ Normalization by py: connection to distant isolated objects is
more important.
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Discussion

o Benefit: distance between points is based on multiple paths
through the graph - more robust to noise.
@ Selection of T is important:
e too small: method from global becomes local, matching
distances between neighbouring points
e too big: all points become equally similar

e Example: 3 clusters with transition probabilities set with (1),
color indicates p(i|j) after t steps.

(b) t =64

Link to picture source
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Autoencoders

o feed-forward neural network, tranined to reproduce input with
MSE loss.

@ D input and D output nodes

e d nodes in the central layer

o x € RP is transformed to y € RY.

@ User-defined number of layers and nodes

Advantages:
e can transform arbitrary x to lower-dimensional space

Disadvantages:
e slow convergence
@ may train layer by layer, then finetune all.
e optimization gets stuck in local optima
e many parameters (weights)
o especially for big D and several layers.
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Local methods

Table of Contents

© Local methods
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Local methods

Local linear embedding

Local linear embedding

Method preserves reconstruction weights of objects through their
nearest neighbors.

INPUT:
training sample xi,Xx2,...Xn
number of neighbours K

ALGORITHM:
for each x;:
find its K nearest neighbours: Xxjai), Xjz2), ---Xi(k)
find weights to reconstruct x; using its neighbours:

~ K
Xi R q Wik Xik)

solve optimization problem: Z,’:’Zl(y; - Zle w,-ky,-k)2 — miny

OUTPUT: reduced space representation: yi,y»,..yn.

R
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Local methods

Weights

Fori=1,2..N:

(| Wik Xi(ky — XiH2 = Miny, w,
Zszl wij =1

K
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Laplacian eigenmaps

Laplacian eigenmaps

Forces distances of points with nearest neighbours to be smaller.

INPUT:
training sample xi,x2,...xn
number of neighbours K

ALGORITHM:

for each x;:
find its K nearest neighbours: Xja), Xi2), ---Xi(k)
for each nearest neighbour j=i(1),i(2),...i(K):

[l =5

calculate distance-based weights: w; =e 2- 2

solve optimization problem:
El 1 EJE{ K)} Wy(y: }/j)2 — miny

OUTPUT: reduced space represejgyé’aztion: Vi, Y2, YN
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Local methods

Comments on local methods

@ short-circuiting affects only local points in space

@ local method, relying on K-NN => prone to curse of
dimensionality

@ prone to overfitting on outliers (when they become nearest
neighbors)
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Local methods

Properties

| Technique | Convex | Parameters | Computational | Memory |
PCA yes none 0o(D?) 0(D?)
MDS yes none O(N3) O(N?)
Isomap yes K O(N?) O(N?)
MVU yes K O((NK)?) O((NK)?)
Kernel PCA yes kernel O(N3) O(N?)
Diffusion maps yes o, T O(N3) O(N?)
Autoencoders no network shape O(INW) o(w)
LLE yes K O(pN?) O(pN?)
Laplacian eigenmaps yes K,o O(pN?) O(pN?)

D - input dimension, N - sample size, K - number of nearest neighbors, o -
smoothing parameter of Gaussian kernel, W number of weights in neural

network, / - number of epochs (passes through whole training set), p - the
fraction of non-zero entries in the weight matrix.

Comment: PCA is the most efficient, then come local methods (italic) and

finally global methods.
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Global vs. local methods

o Global methods try to preserve the whole geometry of data
o less efficient
e find “overall picture”
@ noise points can spoil whole picture
o Local methods try to preserve only local data geometry
e more efficient
e find “locally correct pictures”, then join them
o locally affected by noise points
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Comments

e Problem of transforming new previously unobserved
samples.

o direct for PCA, Kernel PCA, autoencoders
e only approximations possible for other methods.

@ suppose for new x its nearest neightbours form training set
are: X,'(l), ...X,'(K)

© X~ 3 ; wixig, 50 y(x) & 35 way(xigw))
e Selection of target dimensionality d:

o Cross-validation of the original task (e.g. classification)

e How many components of local PCA explain most of the
variance?

e The growth rate of number of objects falling inside a growing
hypersphere with center x:#{x; : ||x; — x|| < R}

o for d-dimensional manifold it should grow o R*.
e etc.
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Local methods

Experiment

@ L.J.P. van der Maaten, E.O. Postma, H.J. van den Herik.
Dimensionality Reduction:A Comparative Review. Working
paper. 2008.

o Extensive comparison of different dimensionality reduction
methods
@ accuracy of 1 nearest neighbour in reduced space.

o Non-linear techniques perform better than PCA on simulated
data

o PCA wins most of the time on real data

e Problems:

o global methods: short-circuiting

@ nearest neighbours based methods: curse of dimensionality,
overfitting to outliers

@ unstable optimization for local methods: they reduce to
eigenproblems, frequently Amax/Amin > 1.

@ suboptimal local optima for autoencoders.
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Local methods

Dangers of dimensionality reduction

[Er——
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