Deep Multigrid: learning restriction and prolongation matrices¹

Alexandr Katrutsa joint work with T. Daulbaev and I. Oseledets

Moscow Institute of Physics and Technology Skolkovo Institute of Science and Technology

November 16, 2017

¹https://arxiv.org/abs/1711.03825

General idea

Problem parametrization

- Parametrization fixes parameters set
- Parametrization controls the quality
- Parametrization gives differentiable steps

Loss function or its upper bound

- Computable in reasonable time
- Differentiable
- Stochastic gradient

Example: geometric multigrid method

- Parameters: restriction and prolongation operators
- Differentiable steps
- Loss function ?

- Partial differential equation
 Domain is the segment [0,1] and boundary conditions are
 u(0) = 0, u(1) = 0.
- Discretization: introducing *n* points mesh and finite differences approximation
- Linear system:

$$Au = f$$

• Grid step: $h = \frac{1}{n+1}$

Two-grid idea

- 1. Perform s_1 steps of iterative process for $u^{(k)}$
- 2. Compute residual $r^{(k)} = Au^{(k)} f$
- 3. Restrict $r^{(k)}$ on coarse grid: $r_c^{(k)} = Rr^{(k)}$
- 4. Project A on coarse grid: $A_c = RAP$
- 5. Solve system $A_c u_c^{(k)} = r_c^{(k)}$
- 6. Update $u^{(k)}$: $\hat{u}^{(k)} = u^{(k)} + Pu_c^{(k)}$
- 7. Perform s_2 steps of iterative process for $\hat{u}^{(k)}$, get $u^{(k+1)}$

Multigrid

Projection onto coarse grid can perform recursively in step 5

Two-grid as iterative process

Two-grid method is an iterative process

 $u^{(k+1)} = Cu^{(k)} + b$

with the following iteration matrix

and $C = (M_2^{-1}K_2)^{s_2}(I + P(RAP)^{-1}RA)(M_1^{-1}K_1)^{s_1}$

 $b = ((M_2^{-1}K_2)^{s_2}P(RAP)^{-1}R(s_1AM_1^{-1} - I) + s_2M_2^{-1})f.$

Pre- and postsmoothing — damped Jacobi method

•
$$M_1 = M_2 = \omega^{-1}D$$

•
$$K_1 = K_2 = \omega^{-1}D - A$$

Iterative process analysis

- The matrix C depends on R,P and ω
- Matrix-by-vector product Cx is one iteration of the two-grid method with $u^{(k)} \equiv x$

Neural Network reformulation

Parametrization

Matrices

- Restriction matrix $R \in \mathbb{R}^{m \times n}$, $m = \frac{n-1}{2}$
- Prolongation matrix $P \in \mathbb{R}^{n \times m}$, $m = \frac{n-1}{2}$

Constraints on matrices

- Non-symmetric, non-homogeneous 3m numbers
- Symmetric, non-homogeneous 2m numbers
- Non-symmetric, homogeneous 3 numbers
- Symmetric, homogeneous 2 numbers

Scalar

Damp factor $\omega \in \mathbb{R}_{++}$

Optimization problem

Loss function — spectral radius

$$p(C) = \max_{i=1,\dots,n} |\lambda_i(C)| \to \min_{R,P,\omega}$$

Hard to optimize! ③

Gelfand formula

$$\rho(A) = \lim_{k \to \infty} \sqrt[k]{\|A^k\|}$$

Use approximation! $\ensuremath{\textcircled{\sc 0}}$

Bounds

For any positive integer K:

$$\gamma^{(1+\ln K)/K} \|A^K\|_F^{1/K} \le \rho(A) \le \|A^K\|_F^{1/K}, \ \gamma \in (0,1)$$

Upper bound minimization

• Stochastic approximation from Hutchinson's estimator:

$$\|A^{K}\|_{F}^{2} = \mathbb{E}_{z} \|A^{K}z\|_{2}^{2},$$

where
$$z = [z_i]$$
, such that
• $z_i \in \mathcal{N}(0, I)$
• $z_i \in \mathcal{R} \left(\mathbb{P}(z_i = \pm 1) = \frac{1}{2} \right)$ — less variance

Optimization problem

۱

$$F_K = \mathbb{E}_z \| C^K z \|_2^2 \to \min_{R, P, \omega}$$

Unbiased estimation

$$\hat{F}_{K} = \frac{1}{N} \sum_{i=1}^{N} \|C^{K} z^{i}\|_{2}^{2}$$

- Stochastic gradient based method (SGD, AdaDelta, Adam, ...)
- Autodiff tool: Autograd, PyTorch, Theano, etc...
- Custom gradient implementations for some layers
- Baur-Strassen's theorem
- Initialization is crucial!

- The problem is strongly non-convex
- Linear interpolation is good for Poisson equation

$$R_{\rm lin} = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 & & \\ & 1 & 2 & 1 & \\ & & & 1 & 2 & 1 \end{bmatrix} \quad P_{\rm lin} = \frac{1}{2} \begin{bmatrix} 1 & & \\ 2 & & \\ 1 & 1 & & \\ & 2 & & \\ & 1 & 1 & \\ & & 2 & \\ & & & 1 \end{bmatrix}$$

- But stuck in poor local minima in more complex cases
- How to deal with this issue?

- Homotopy with start matrix A_0 and target matrix A_1
 - Consider sequence of matrix

$$M_{i} = \alpha_{i}A_{1} + (1 - \alpha_{i})A_{0},$$

$$\alpha_{0} = 0, \ 0 < \alpha_{1} < \alpha_{2} < \dots < \alpha_{k-1} < 1, \ \alpha_{k} = 1$$

- Solution of the *i*-th problem is initialization for the (i + 1)-th problem
- Grid of α_i is adaptive with acceptance rate au

Model 1D problems

• Poisson equation:
$$-\Delta u = f$$

$$A = -\frac{1}{h^2} \begin{bmatrix} -2 & 1 & & \\ 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ & & & 1 & -2 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

- Helmholtz equation: $-\Delta u k^2 u = f$
 - low frequency: $k \approx 10$
 - high frequency: $k \gtrsim 100$
 - piece-wise constant k(x):

$$k(x) = \begin{cases} 1, & 0 \le x < 0.5\\ k_{\max}, & 0.5 \le x \le 1. \end{cases}$$

• Stationary singularly-perturbed diffusion-convection equation

Spectral radii ρ for the compared methods

Grid size	Linear	AMG	DMG
7	0.061728	0.182358	0.015088
15	0.061728	0.193726	0.018481
31	0.061728	0.196578	0.027819
63	0.061728	0.197207	0.045068
127	0.061728	0.195878	0.045400

Spectral radii ρ for the compared methods

Grid size	k	Linear	AMG	DMG
7	5	0.226356	0.226214	0.012505
13	10	1.808608	0.255912	0.044337
17	15	0.826753	0.406821	0.062037
23	20	3.388036	0.418464	0.067183

Spectral radii ρ for the compared methods, grid size n = 1115

k	Linear	AMG	DMG
100	0.180680	0.198093	0.061088
300	13.389492	0.203956	0.053827
500	14.608550	0.218872	0.066820
700	99.555631	0.243871	0.060205
900	62.940589	0.377024	0.091268
1000	4789.842424	0.607620	0.116077

/⊒ > < ∃ >

Helmholtz equation: non-constant k(x)

Spectral radii ρ for the compared methods

Grid size	$k_{\rm max}$	Linear	AMG	DMG
127	100	3.147622	0.330212	0.078162
255	100	1.642432	0.212405	0.047063
511	100	0.194238	0.200955	0.055769

Homotopy performance — 3m numbers

Alexandr Katrutsa

Homotopy performance — 2 numbers

Alexandr Katrutsa

Moving frequency from low to high

æ

э

< 17 > <

Stationary diffusion-convection equation

$$-\varepsilon \frac{d^2 u(x)}{dx^2} + \frac{d u(x)}{dx} = f(x), \qquad u(0) = 0, \quad u(1) = 0$$

Non-symmetric matrix A:

$$A = -\frac{\varepsilon}{h^2} \begin{bmatrix} -2 & 1 & & \\ 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ & & & 1 & -2 \end{bmatrix} + \frac{1}{h} \begin{bmatrix} -1 & 1 & & \\ 0 & -1 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & -1 & 1 \\ & & & 0 & -1 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Boundary layer

Grid has to cover boundary layer $\rightarrow h < \varepsilon$.

Methods comparison

$$n = 63$$

n = 127

22 / 24

- General approach to find locally optimal parameters through NN reformulation
- Unbiased estimation of the loss function for iterative process
- Method to find locally optimal parameters for the two-grid method
- Homotopy initialization
- Robustness under different constraints on the operators

- Extend to 2D case almost done
- Optimize sparse preconditioners
- Use GPU-based framework
- Extend approach to other problems