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Document classi�cation

Major applications:

News �ltering and organization
Document organization and retrieval
Opinion Mining (sentiment analysis)
E-mail classi�cation and spam �ltering

Document classi�cation vs labelling
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Tokenization

1 Split documents into individual tokens.

tokens may be words or symbol sequences
may or may not include punctuation

2 Form the set of all distinct tokens {t1, t2, ...}.
ignore stop-words (exact list depends on the application)
ignore tokens which are too rare and too frequent
account only for particular parts of speech (nouns, adjectives?
verbs? ...)

3 May add bigram/trigram collocations
4 May normalize words:

stemming

fast, does not need dictionary

lemmatization

more accurate, needs dictionary
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Standard document representations
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Standard document representations

Documents representation

Typical representation of text for classi�cation:

we evaluate only the presence of each distinct word in
document d
order of words does not matter (�bag-of-words� assumption)

To account for word order - extract collocations as tokens
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Standard document representations

Term frequency

Term-frequency model: TF (i) = ni or TF (i) =
ni
n

ni is the number of times ti appeared in d
n total number of tokens in d
second de�nition gives invariance to document length

TF(i) measures how common is token ti in the document.

To make distribution of TF (i) = ni less skewed it is usually
calculated as TF (i) = ln (1+ ni )
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Standard document representations

Inverted document frequency

Inverted document frequency: IDF (i) = N
Ni

N - total number of documents in the collection
Ni - number of documents, containing token ti .

IDF (i) measures how speci�c is token i .

To avoid skewness IDF is more frequently used as

IDF (i) = ln

(
1+

N

Ni

)
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Standard document representations

Vector representation of documents

Consider document d and its feature representation x .

Indicator model: x i = I[ti ∈ d ].

TF model: x i = TF (i)

TF-IDF model: x i = TF (i) ∗ IDF (i)

Several representations, indexed by I1, I2, ...IK can be united
into single feature representation
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Standard document representations

Properties of standard documents representation

Properties of standard documents representation:
high dimensionality - at least D.
very sparse (few features not equal to zero)1

Reduction of feature space
remove stop-words
remove words which are too frequent or too rare
remove words, irrelevant for current task

e.g. leave only nouns for topic modelling,
adjectives+particles+adverbs for sentiment analysis, etc.

stemming / lemmatization
feature selection
dimensionality reduction

Linear models (such as linear/logistic regression, SVM) work
well.

have minimal complexity so over�t less for high D
1in python use scipy.sparse

8/26



Text classi�cation. - Victor Kitov

Standard document representations

Linear regression

Linear regression

ŷ(x) = β0 + βT x = β0 + β1x
1 + ...+ βDx

D

Parameters: β = [β1, ..βD ]
T , β0
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Standard document representations

Linear regression estimation

Usually it is estimated with

N∑
n=1

(
β0 + βT xn − yn

)2
+ λR(β)→ min

β

λ is regularization parameter, ↑ λ⇔ complexity↓.

Ridge regression:R(β) =
∑D

d=1
β2d

for correlated features spreads weights equally among them

LASSO regression: R(β) =
∑D

d=1
|βd |

for correlated features selects one of them
performs automatic feature selection
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Standard document representations

Linear classi�er

Consider binary classi�cation: y ∈ {+1,−1}
muticlass classi�cation can be performed with many binary
classi�ers.

Linear classi�er:

ŷ(x) = sign
(
β0 + βT x

)
= sign{β0 + β1x

1 + ...+ βDx
D}

Estimated parameters: β = [β1, ..βD ]
T ,β0.
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Standard document representations

Margin

De�ne the margin M(x , y) = y
(
β0 + βT x

)
M(x , y) ≥ 0 <=> object x is correctly classi�ed as y
|M(x , y)| - con�dence of decision

Margin shows the score of classifying object (x , y).
the more, the better

Categorization of objects with respect to margin
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Standard document representations

Weight optimization

Weights found with

N∑
n=1

L((β0 + βT xn)yn) + λR(β)→ min
β0,β

λ is regularization parameter, ↑ λ⇔ complexity↓.
Ridge regression:R(β) =

∑D
d=1

β2d
for correlated features spreads weights equally among them

LASSO regression: R(β) =
∑D

d=1
|βd |

for correlated features selects one of them
performs automatic feature selection

L(M) = max {1−M, 0} => SVM

L(M) = ln(1+ e−M) => logistic regression
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Standard document representations

Di�erent account for di�erent features

Optimization task for regression and classi�cation:

N∑
n=1

L(xn, yn|β, β0) + λR(β)→ min
β0,β

Suppose we have K groups of features with indices:I1, I2, ...IK
nouns, adjectives, verbs, etc.
indicators, TF, TF-IDF
unigrams, bigrams
etc.

We may control the impact of each group on the model:

N∑
n=1

L(ŷn, yn|β, β0)+λ1R({βi |i ∈ I1})+...+λKR({βi |i ∈ IK})→ min
β0,β

λ1, λ2, ...λK can be set using cross-validation.
Scikit-learn allows to set only single λ. But we can control
impact of each feature group by di�erent feature scaling.14/26
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Standard document representations

Metric methods of text classi�cation

Metric methods typically use:

Euclidean distance
√∑

d (xd − zd)
2

cosine similarity: 〈x,z〉
‖x‖‖z‖

equal to cosine of angle between x and z
invariant to document size (norms of x and z)
cosine distance = 1-cosine similarity

Rochio method

equivalent name - nearest centroid
O(ND) training time, O(CD) test time
fails for non-linear boundary

K-NN

weighted K-NN can use weights ∝ cosine similarity (x , xn)
O(ND) training time (memorization), O(ND) test time.
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Generative text classi�cation models
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Generative text classi�cation models

Naive Bayes assumption

Bayesian minimum error decision rule:

ŷ(x) = arg max
y

p(y |x) = arg max
y

p(y , x)

p(x)
= arg max

y
p(y)p(x |y)

p(x1, x2, ...xD |y) = p(x1|y)p(x2|y , x1)...p(xD |y , x1, x2, ...xD−1)
Problem: exponential to D number of observations needed for
estimation.

Naive Bayes assumption in classi�cation

Individual features are class conditionally independent:
p(x |y) = p(x1|y)p(x2|y)...p(xD |y)

With Naive Bayes max-posterior probability rule becomes:

ŷ(x) = argmax
y

p(y)p(x1|y)p(x2|y)...p(xD |y)
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Generative text classi�cation models

Generative text models

Restrict attention to D words w1,w2, ...wD

Two major models:

Bernoulli

considers x i = I[wi appeared in the document]

Multinomial

considers x i =[number of times wi appeared in the document]
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Generative text classi�cation models

Bernoulli model4

w1,w2, ...wD -all unique words (tokens) in dictionary
Decision rule:

ŷ(x) = arg max
y

p(y)p(x |y)

x ∈ RD , x i = I[wi appeared in the document], i = 1,D
Document generation of class y : for each word wd generate
its occurence in document with Bernoulli(θdy ) .

p(y) =
Ny

N

p(x |y) =
∏D

d=1

(
θdy
)xd (

1− θdy
)1−xd

θdy = p(xd = 1|y) =
N
yxd

Ny

Smoothed variant23: θdy =
N
yxd

+α

Ny+2α
2interpret this in terms of adding arti�cial observations
3modify for smoothing towards uncoditional word distribution
4is it linear classi�er?
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Generative text classi�cation models

Multinomial model

w1,w2, ...wD -all unique words (tokens) in dictionary

Decision rule:

ŷ(x) = arg max
y

p(y)p(x |y)

x ∈ RD , x i =[number of times wi appeared in the document],
i = 1,D

Document generation of class y : for each word-position
i = 1, 2, ...ndocument generate word zi with
Categorical(θy

1
, θy

2
, ...θyD).

θyi =[probability of wi on word position]
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Generative text classi�cation models

Multinomial model7(∑
i x

i
)
! - number of permutations of all words∏

i

(
x i
)
! - number of permutations of words withing groups

(of the same word)
(
∑

i x
i)!∏

i (x
i )!

- number of permutations of word groups.

Since permutation of word groups do not a�ect word counts
[x1, ...xD ] in the document:

p(x |y) =
(∑

i x
i
)
!∏

i (x
i )!

D∏
i=1

(
θyi
)x i

p(y) =
Ny

N , θyi = nyi/ny where

nyi - number of times word wi appeared in documents∈ y
ny - number of words in documents∈ y

Smoothed version56: θdy =
nyd+α

ny+αD
5interpret this in terms of adding arti�cial observations
6modify for smoothing towards uncoditional word distribution
7is it linear classi�er?
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Generative text classi�cation models

Discussion

For prediction discriminative models are preferred to generative

they do not model high dimensional p(x |y)
do not rely upon Naive Bayes assumption

Advantages of generative models

can adapt to changes in p(y)
can �lter outliers by p(x)
Multinomial and Bernoulli �t in O(ND).
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Feature selection for text classi�cation
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Feature selection for text classi�cation

Feature selection for text classi�cation

Feature selection - select words with most discriminative
information about document classes.

We estimate criterion I (w), order words by decreasing I (w)
and select features to top K values of I (w).

De�ne p(c |w) = p(y = c |word w is present) - conditional
probability of c-th class of document, given it contains word w .

When classes are unbalances may replace p(c |w) with p′(c |w):

p′(c |w) =
p(y = c |w)/p(y = c)∑
i p(y = i |w)/p(y = i)
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Feature selection for text classi�cation

All classes informativeness criteria

Natural measures of discrimination by w :

I (w) = std .dev
(
{p(c|w)}Cc=1

)
I (w) = max

(
{p(c |w)}Cc=1

)
−min

(
{p(c |w)}Cc=1

)
Gini index for word w :

G (w) =
C∑

c=1

p(c |w)2

Information gain (w denotes absense of word w):

I (w) = Entropy(c)− Entropy(c |w)

= −
∑
c

p(c) ln p(c) + p(w)
∑
c

p(c |w) ln p(c |w)

+ (1− p(w))
∑
c

p(c |w) ln p(c |w)
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Feature selection for text classi�cation

Fixed class informativeness criteria

Mutual information

Ic(w) = ln

(
p(w , c)

p(w)p(c)

)
= ln

(
p(w)p(c |w)

p(w)p(c)

)
= ln

(
p(c |w)

p(c)

)
χ2-statistic (test H0: occurence of w and occurence of class c
are independent)

Ic(w) =
Np(w)2 (p(c |w)− p(w))2

p(w) (1− p(w)) p(c) (1− p(c))

2 previous measures estimate word informativeness with
respect to �xed class.
Informativness of w for all classes can be generated by:

I (w) =
∑
c

p(c)Ic(w)

I (w) = max
c

Ic(w)
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Feature selection for text classi�cation
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