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Motivational example: image segmentation

Task: assign a label yi to each pixel of anM ×N image.
Let P (y) be the joint probability of labelling y.
Two extreme cases:

No assumptions about independence:
O(KMN

) parameters (K = total number of labels)
represents every distribution
intractable in general

Everything is independent: P (y) = p1(y1) . . . pMN(yMN)

O(MNK) parameters
represents only a small class of distributions
tractable
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Graphical models

Provide a convenient way to define probabilistic models using graphs.
Two types: directed graphical models and Markov random fields.
We will consider only (discrete) Markov random fields.
The edges represent dependencies between the variables.
E.g., for image segmentation:

yi yi

A variable yi is independent of the rest given its immediate neighbours.
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Markov random fields

Themodel:
P (y) =

1

Z
∏
c∈C

Ψc(yc),

Z : normalisation constant
C: set of all (maximal) cliques in the graph
Ψc: non-negative functions which are called factors

Example:
y1 y2

y3 y4

P (y1, y2, y3, y4) =
1

Z
Ψ1(y1)Ψ2(y2)Ψ3(y3)Ψ4(y4)

× Ψ12(y1, y2)Ψ24(y2, y4)Ψ34(y3, y4)Ψ13(y1, y3)

The factors Ψij measure ’compatibility’ between variables yi and yj .
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Main problems of interest

Probabilistic model:

P (y) =
1

Z
∏
c∈C

Ψc(yc) =
1

Z
exp(−E(y)),

where E is the energy function:
E(y) =∑

c∈C
Θc(yc), Θc(yc) = − lnΨc(yc)

Maximum a posteriori (MAP) inference:
y∗ = argmax

y
P (y) = argmin

y
E(y)

Estimation of the normalisation constant:
Z =∑

y

P (y)

Estimation of the marginal distributions:
P (yi) = ∑

y∖yi
P (y)
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Tensorial perspective

Energy and unnormalised probability are tensors:

E(y1, . . . , yn) =
m

∑
c=1

Θc(yc),

P̂(y1, . . . , yn) =
m

∏
c=1

Ψc(yc),

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

tensors (multidimensional arrays)

where yi ∈ {1, . . . , d}.
In this language:

MAP-inference ⇐⇒ minimal element inE
Normalisation constant ⇐⇒ sum of all the elements of P̂
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TT-format

TT-format for a tensorA:
A(y1, . . . , yn) = G1[y1]

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
1×r1

G2[y2]
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
r1×r2

. . .Gn[yn]
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
rn−1×1

Terminology:
Gi: TT-cores
ri: TT-ranks
r =max ri: maximal TT-rank

TT-format usesO(ndr2)memory to storeO(dn) elements.
Efficient only if the ranks are small.
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TT-format: efficient operations and advantages

Operation Output rank

C =A +B r(A) + r(B)
C =A⊙B r(A)r(B)
sumA –
minA –
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TT-approach forMarkov random fields

MAP-inference ⇐⇒ minimal element inE

Normalisation constant ⇐⇒ sum of all elements of P̂

Both operations are provided by the TT-format.

Let’s convertE and P̂ to the TT-format.
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Finding a TT-representation of anMRF

TT-SVD (Oseledets, 2011): exact algorithm but only for small tensors
No, MRF tensor is too big.

AMEn-cross (Oseledets & Tyrtyshnikov, 2010): approximate algorithm;
uses only a small fraction of the tensor’s elements
Possible, but there is a better way!
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Converting the energy to the TT-format

E(y) =
m

∑
c=1

Θc(yc)

EachΘc(yc) depends only on part of the all variables and is usually of
low dimensionality⇒ can be converted to the TT-format using TT-SVD.
Use the summation operation to build the TT-representation forE.
To do this, we need to add inessential variables y ∖ yc to every potential:
Θc(y) ≡Θc(yc).
The same for the probability tensor, but use the Hadamard product.

y1 y2

y3 y4
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Adding inessential variables

Let y = (y1, y2, y3, y4, y5), yc = (y1, y2, y4).
We already have the TT-format forΘc(yc):

Θc(y1, y2, y4) = G1[y1]G2[y2]G4[y4].

To introduce y3 and y5, define the missing cores as identity matrices:
Θc(y1, y2, y3, y4, y5) = G1[y1]G2[y2] I

®
≡G3[y3]

G4[y4] I
®

≡G5[y5]
.

Themaximal TT-rank does not increase!
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The resulting algorithm

 Compute the TT-decomposition for each individual potentialΘc(yc).
 Add the inessential variables: Θc(yc)⇒Θc(y).
 Use the TT-summation to buildE(y): E(y) = ∑m

c=1Θc(y).

Theorem
The maximal TT-rank of the tensor E is polynomially bounded:

r(E) ≤ d
p
2m,

where
d = number of values that each variable can take;
m = total number of potentials;
p = maximal order of a potential (i.e. the maximal ∣yc∣).

Consider p = 2. Then r(E) ≤ dm (linear dependence onm).
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TT-rounding

TT-rounding procedure: Ã = round(A, ε):
 reduces TT-ranks
 tensors are close (ε = accuracy)

round( )
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The TT-format for the probability

We could find the TT-representation of P̂ analogously:

P̂ =
m

⊙
c=1

Ψc.

However, the TT-ranks of P̂ are exponential:
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We need to compute Z without explicitly building the TT for P̂.
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Normalisation constant estimation

Kronecker product property: ab = a⊗ b, a, b ∈ R.
Mixed product property: AC ⊗BD = (A⊗B)(C ⊗D).
Then

P̂(y) =
m

∏
c=1

Ψc(y)

=
m

⊗
c=1

Ψc(y) =
m

⊗
c=1
(Gc

1[y1]⋯G
c
n[yn])

= (G1
1[y1]⊗⋯⊗Gm

1 [y1])⋯ (G
1
n[yn]⊗⋯⊗Gm

n [yn]) .

Denote Ai[yi] = G
1
i [yi]⊗ ⋅ ⋅ ⋅ ⊗Gm

i [yi] (this is a huge matrix).
Then

Z =∑
y

P̂(y) = ∑
y1,...,yn

A1[y1] . . .An[yn]

=
⎛

⎝
∑
y1

A1[y1]
⎞

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B1

. . .
⎛

⎝
∑
yn

An[yn]
⎞

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Bn

= B1⋯Bn.
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The algorithm

We have obtained the following expression:
Z = B1 . . .Bn,

Each matrixBi is huge but can be exactly represented in the TT-format.
The algorithm:

 f1 ∶= B1
 f2 ∶= round(f1B2, ε)
 f3 ∶= round(f2B3, ε)
 . . .
 fn ∶= round(fn−1Bn, ε)
 Z̃ ∶= fn;

This approach can be generalized to marginal distributions as well:
P̂i(yi) = B1 . . .Bi−1Ai[yi]Bi+1 . . .Bn,
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Experiments: MAP-inference

The TT-method for the MAP-inference:
 Convert the energy to the TT-format;
 Find the minimal element in this tensor.

We compare this method with the popular TRW-S algorithm on several
real-world image segmentation problems from the OpenGM database.

Problem Variables Labels TRW-S TT Time (sec)
gm6 320 3 45.03 43.11 637
gm29 212 3 56.81 56.21 224
gm66 198 3 75.19 74.92 172
gm105 237 3 67.81 67.71 230
gm32 100 7 150.50 289.29 257
gm70 122 7 121.78 163.60 399
gm85 143 7 168.30 228.40 1 912
gm192 99 7 114.51 174.78 180
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Experiments: normalisation constant set-up

Spin glass model:

P̂(y) =
n

∏
i=1

exp(−
1

T
hiyi) ∏

(i, j)∈E
exp(−

1

T
cijyiyj) ,

where yi ∈ {−1,1}.
Terminology:

T : temperature

hi: unary coefficients

cij : pairwise coefficients

yi

Compare against methods from the LibDAI library ([?]).
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Experiments: normalisation constant
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Experiments: WISH
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Experiments: marginal distributions
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Conclusions

TT-format is very effective for the energy tensor. We have a good method
for finding its TT-representation.
However, TT-format is not suitable for the probability tensor.
We have proposed an algorithm which estimates the normalisation
constant without building the probability tensor.
This algorithm is much more accurate than other state-of-the-art methods.
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