# Overview of Deep Learning Instruments pt. 1

### Sergey Ivanov (517)

qbrick@mail.ru

September 17, 2018

Sergey Ivanov (517)

#### Table of contents

# Deep Learning

Neural networks Goals of deep learning

### Considering data structure

Invariants Recurrent Neural Networks (RNN) Long Short-Term Memory (LSTM)

# Section 1

# Deep Learning

Sergey Ivanov (517)

Neural networks

# What is neural net?

Sergey Ivanov (517)

Neural networks

# What is neural net?

• parametric family  $f(x, \theta), \quad \theta \in \Theta$ 

Sergey Ivanov (517)

# What is neural net?

- parametric family  $f(x, \theta), \quad \theta \in \Theta$
- with universal approximation properties

# What is neural net?

- parametric family  $f(x, \theta), \quad \theta \in \Theta$
- with universal approximation properties
- differentiable

# What is neural net?

- parametric family  $f(x, \theta), \quad \theta \in \Theta$
- with universal approximation properties
- differentiable

### Deep Learning is Machine Learning!

Machine Learning is always about searching for function:

$$\mathbb{E}_{(x,y)\sim \mathsf{Data}} \operatorname{\mathsf{Loss}}(f(x,\theta),y) \to \min_{\theta}$$

### Building neural nets

Common way to build complex functions — composition:

$$f(x,\theta) = f_1(f_2(f_3(\dots)))$$

Chain rule gives us the derivative  $\nabla f(x, \theta)$ 

### Building neural nets

Common way to build complex functions — composition:

$$f(x,\theta) = f_1(f_2(f_3(\dots)))$$

Chain rule gives us the derivative  $\nabla f(x, \theta)$ 

Same works for functions of vectors!

### Building neural nets

Common way to build complex functions — composition:

$$f(x,\theta) = f_1(f_2(f_3(\dots)))$$

Chain rule gives us the derivative  $\nabla f(x, \theta)$ 

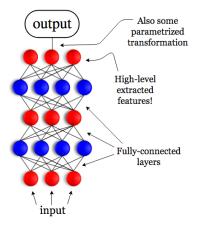
Same works for functions of vectors! Typical example:

$$f_i(x,\theta) \in \{Ax,\sigma(x),\dots\}$$

where  $\sigma$  — some element-wise nonlinear function.

#### Neural networks

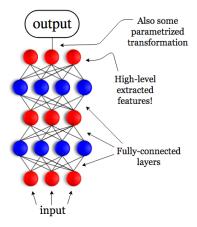
### Typical example



#### Sergey Ivanov (517)

#### Neural networks

### Typical example



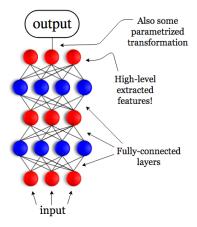
### Output:

- regression:
  - just numbers

#### Sergey Ivanov (517)

#### Neural networks

### Typical example

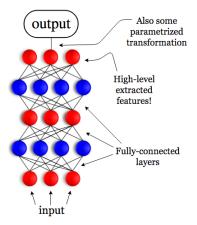


### Output:

- regression:
  - just numbers
  - parameters of distribution

#### Sergey Ivanov (517)

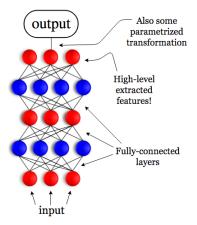
# Typical example



### Output:

- regression:
  - just numbers
  - parameters of distribution
- classification:
  - $\times$  just classes

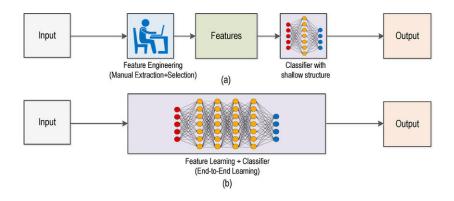
# Typical example



### Output:

- regression:
  - just numbers
  - parameters of distribution
- classification:
  - $\times$  just classes
  - probabilities of classes

# End-to-end learning



#### Sergey Ivanov (517)

Goals of deep learning

### Automation is the goal!

In DL we are required to specify:

net topology

#### Goals of deep learning

### Automation is the goal!

- net topology
  - trial and error
  - evolutionary methods

#### Goals of deep learning

### Automation is the goal!

In DL we are required to specify:

- net topology
  - trial and error
  - evolutionary methods
  - ✓ AutoML

#### Goals of deep learning

### Automation is the goal!

- net topology
  - trial and error
  - evolutionary methods
  - ✓ AutoML
- regularization

#### Goals of deep learning

### Automation is the goal!

- net topology
  - trial and error
  - evolutionary methods
  - ✓ AutoML
- regularization
  - dropout
  - batch normalization

#### Goals of deep learning

### Automation is the goal!

- net topology
  - trial and error
  - evolutionary methods
  - ✓ AutoML
- regularization
  - dropout
  - batch normalization
  - ✓ Bayesian neural nets

## Automation is the goal!

In DL we are required to specify:

- net topology
  - trial and error
  - evolutionary methods
  - ✓ AutoML
- regularization
  - dropout
  - batch normalization
  - ✓ Bayesian neural nets

optimization method

### Automation is the goal!

In DL we are required to specify:

- net topology
  - trial and error
  - evolutionary methods
  - ✓ AutoML
- regularization
  - dropout
  - batch normalization
  - ✓ Bayesian neural nets

- optimization method
  - use more or less universal methods like Adam

### Automation is the goal!

In DL we are required to specify:

- net topology
  - trial and error
  - evolutionary methods
  - ✓ AutoML
- regularization
  - dropout
  - batch normalization
  - ✓ Bayesian neural nets

- optimization method
  - use more or less universal methods like Adam
  - ✓ Meta-learning

### Automation is the goal!

In DL we are required to specify:

- net topology
  - trial and error
  - evolutionary methods
  - ✓ AutoML
- regularization
  - dropout
  - batch normalization
  - ✓ Bayesian neural nets

- optimization method
  - use more or less universal methods like Adam
  - ✓ Meta-learning
- data representation

## Automation is the goal!

- net topology
  - trial and error
  - evolutionary methods
  - ✓ AutoML
- regularization
  - dropout
  - batch normalization
  - ✓ Bayesian neural nets

- optimization method
  - use more or less universal methods like Adam
  - ✓ Meta-learning
- data representation
  - "stack more layers"
  - "we need to go deeper"

# Automation is the goal!

- net topology
  - trial and error
  - evolutionary methods
  - ✓ AutoML
- regularization
  - dropout
  - batch normalization
  - ✓ Bayesian neural nets

- optimization method
  - use more or less universal methods like Adam
  - ✓ Meta-learning
- data representation
  - "stack more layers"
  - "we need to go deeper"
  - √ ?!?

MSU

# Section 2

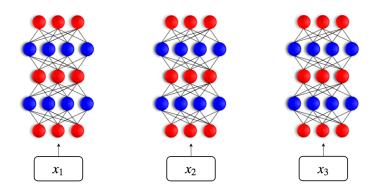
# Considering data structure

Sergey Ivanov (517)

Considering data structure • 0000 • 000 • 000 • 000

#### Invariants

### Pooling invariants

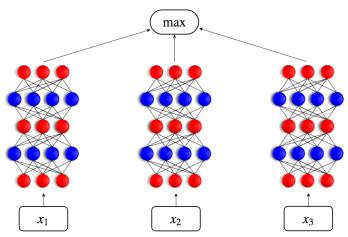


#### Sergey Ivanov (517)

Considering data structure • 0000 • 000 • 000 • 000

#### Invariants

# Pooling invariants

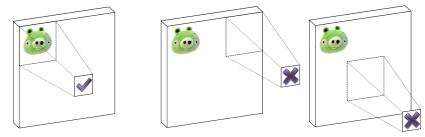


#### Sergey Ivanov (517)

Considering data structure  $0 \bullet 000$  $0 \circ 000$  $0 \circ 000$ 

#### Invariants

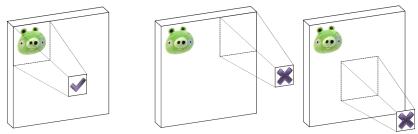
### Translation invariance



Sergey Ivanov (517)

#### Invariants

### Translation invariance

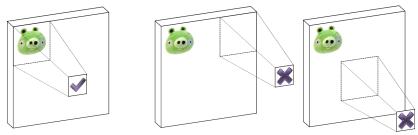


### Usually followed by:

- max pooling (one invariant is of a particular interest)
  - other pooling options possible

#### Invariants

### Translation invariance



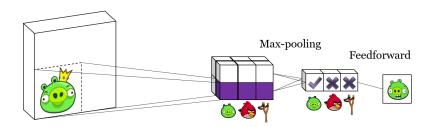
### Usually followed by:

- max pooling (one invariant is of a particular interest)
  - other pooling options possible
- concatenation (for subtasks of same structure)

#### Sergey Ivanov (517)

#### Invariants

### Size invariance

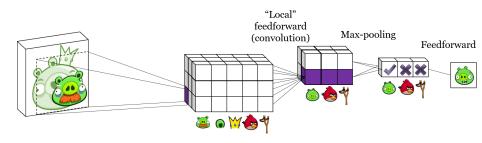




Sergey Ivanov (517)

#### Invariants

### Size invariance

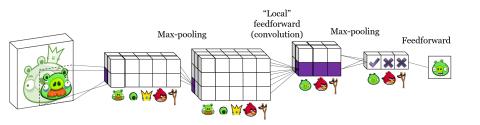




Sergey Ivanov (517)

#### Invariants

### Size invariance





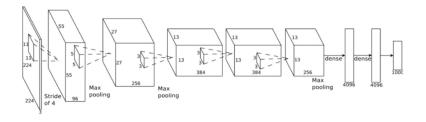
Sergey Ivanov (517)

MSU

#### Invariants

# Convolutional neural network (CNN)

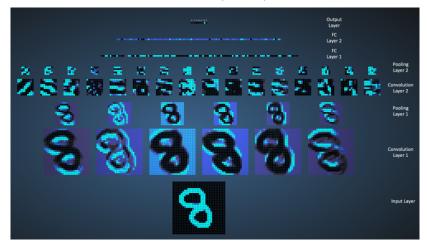
#### Resulting network:



Sergey Ivanov (517)

#### Invariants

# Convolutional neural network (CNN)

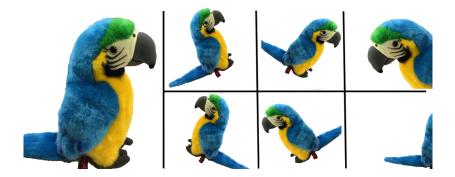


Sergey Ivanov (517)

#### Invariants

# Augmentation

# If you can't consider invariants in architecture, enlarge your dataset.

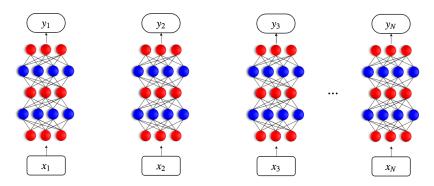


#### Sergey Ivanov (517)

Considering data structure 0000 000

# Sequences as input

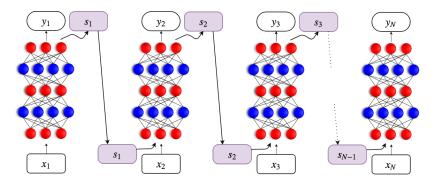
### Applying same idea:



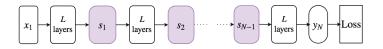
Considering data structure 0000 000

# Sequences as input

### Naive approach:



# Gradients problem

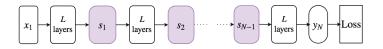


### Problem:

Gradient is required to pass LN layers.

Sergey Ivanov (517)

# Gradients problem

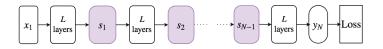


### Problem:

Gradient is required to pass LN layers.

Chain rule says it's multiplication of LN quantities.

# Gradients problem



### Problem:

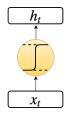
Gradient is required to pass LN layers.

Chain rule says it's multiplication of LN quantities.

- ▶ most absolute values < 1: vanishing gradients problem
- ▶ most absolute values > 1: exploding gradients problem

Recurrent Neural Networks (RNN)

### Recurrent units

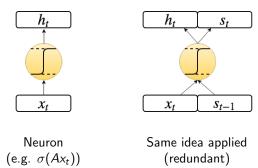


Neuron (e.g.  $\sigma(Ax_t)$ )

Sergey Ivanov (517)

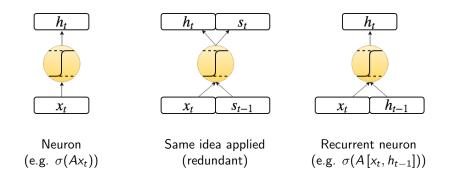
Recurrent Neural Networks (RNN)

# Recurrent units

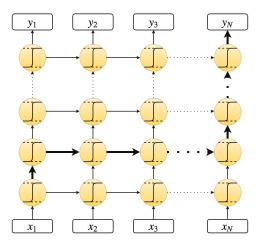


Recurrent Neural Networks (RNN)

# Recurrent units

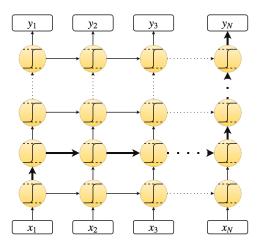


### Recurrent neural nets



Considering data structure ○○○○○ ○○○● ○○○

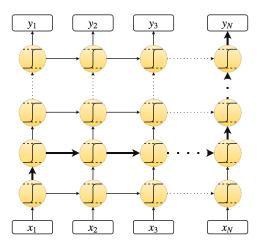
### Recurrent neural nets



✓ N + L layers for gradient to pass!

Considering data structure ○○○○○ ○○○● ○○○

### Recurrent neural nets



- ✓ N + L layers for gradient to pass!
  - ? Was previous option better at something?

#### Long Short-Term Memory (LSTM)

### Memory

Consider writing to memory task, i. e. the following operation:

How to express it in terms of computational graphs?

# Memory

Consider writing to memory task, i. e. the following operation:

How to express it in terms of computational graphs?

# Memory

Consider writing to memory task, i. e. the following operation:

How to express it in terms of computational graphs?

### Memory

Consider writing to memory task, i. e. the following operation:

How to express it in terms of computational graphs?

Memory update formula

$$c_t = f_t \circ c_{t-1} + w_t \circ f(x_t) \quad w_t, f_t \in \{0, 1\}$$

where  $\circ$  is element-wise multiplication.

#### Sergey Ivanov (517)

Considering data structure ○○○○○ ○○○○ ○●○

Long Short-Term Memory (LSTM)

### Gates $w_t, f_t$ are also some functions of input! For example,

 $\mathbb{I}[Ax_t > 0]$ 

### Gates

 $w_t$ ,  $f_t$  are also some functions of input! For example,

 $\mathbb{I}[Ax_t > 0]$ 

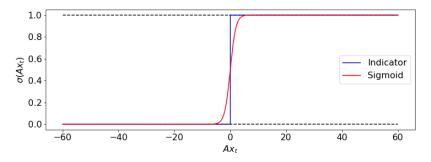
**DL main rule:** if something is not differentiable, make a smooth (*soft*) version of it!

### Gates

 $w_t$ ,  $f_t$  are also some functions of input! For example,

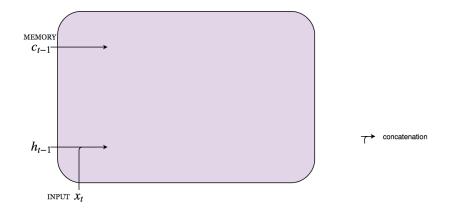
 $\mathbb{I}[Ax_t > 0]$ 

**DL main rule:** if something is not differentiable, make a smooth (*soft*) version of it!



Long Short-Term Memory (LSTM)

LSTM: recurrent neurons with memory.

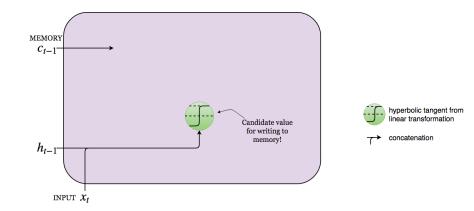


#### Sergey Ivanov (517)

Considering data structure

Long Short-Term Memory (LSTM)

LSTM: transforming data: 
$$c'_t = \tanh(A_c[x_t, h_{t-1}])$$



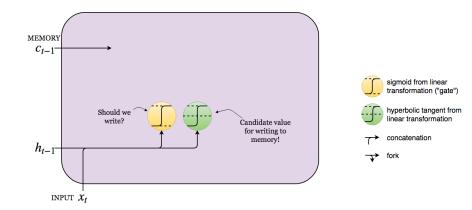
#### Sergey Ivanov (517)

Considering data structure

MSU

Long Short-Term Memory (LSTM)

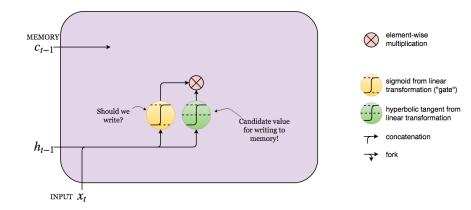
LSTM: writing gate: 
$$w_t = \sigma(A_w[x_t, h_{t-1}])$$



#### Sergey Ivanov (517)

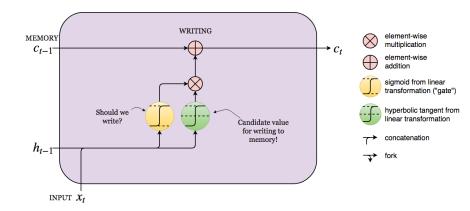
Long Short-Term Memory (LSTM)

LSTM: 
$$c_t = f_t \circ c_{t-1} + w_t \circ c'_t$$



Long Short-Term Memory (LSTM)

LSTM: 
$$c_t = f_t \circ c_{t-1} + w_t \circ c'_t$$



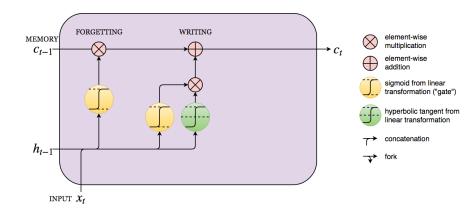
#### Sergey Ivanov (517)

Considering data structure

MSU

Long Short-Term Memory (LSTM)

LSTM: 
$$c_t = f_t \circ c_{t-1} + w_t \circ c'_t$$

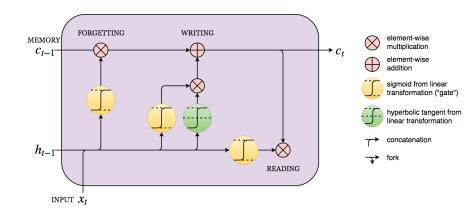


#### Sergey Ivanov (517)

MSU

Long Short-Term Memory (LSTM)

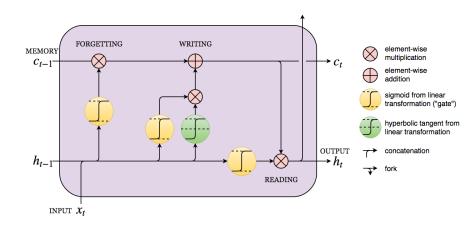
LSTM:  $h_t = r_t \circ c_t$ 



#### Sergey Ivanov (517)

Long Short-Term Memory (LSTM)

### LSTM: full scheme



#### Sergey Ivanov (517)