Stability

Egor Shulgin

Moscow Institute of Physics and Technology Department of Control and Applied Math

March 13, 2019

Egor Shulgin (MIPT, DCAM)

Train faster, generalize better: Stability of stochastic gradient descent M Hardt, B Recht, Y Singer ICML 2016, 1225-1234

259 2015

arXiv link

3

(日) (同) (三) (三)

2 Stability of Sochastic Gradient Descent

- Stability-inducing operations
- 4 Convex risk minimization

Stochastic Gradient Method (SGM) for Machine Learning

Given *n* labeled examples $S = (z_1, ..., z_n)$ where $z_i \in Z$, consider a *decomposable* objective function

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} f(w; z_i),$$

where $f(w; z_i)$ denotes the *loss* of w on the example z_i . The stochastic gradient update for this problem with *learning rate* $\alpha_t > 0$ is given by

$$w_{t+1} = G_{f,\alpha_t}(w_t) = w_t - \alpha_t \nabla_w f(w_t; z_{i_t}).$$

Default method in practice

- scalable
- easy-to-implement
- robust

works well across many diferent domains

Egor Shulgin (MIPT, DCAM)

Stability of randomized iterative algorithms

 \mathcal{D} – unknown distribution over space Z. We receive a sample $S = (z_1, \ldots, z_n)$ of *n* examples drawn i.i.d. from \mathcal{D} . Our goal is to find a model *w* with small *population risk*: $R[w] \stackrel{\text{def}}{=} \mathbb{E}_{z \sim \mathcal{D}} f(w; z)$

- Empirical risk: $R_S[w] \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f(w; z_i)$
- Generalization error: $R_S[w] R[w]$
- Expected generalization error: $\epsilon_{\text{gen}} \stackrel{\text{def}}{=} \mathbb{E}_{S,A}[R_S[A(S)] R[A(S)]]$

Definition

A randomized algorithm A is ϵ -uniformly stable if for all data sets $S, S' \in Z^n$ such that S and S' differ in at most one example, we have $\sup_{z} \mathbb{E}_{A}[f(A(S); z) - f(A(S'); z)] \leq \epsilon$.

Theorem [Generalization in expectation]

Let A be ϵ -uniformly stable. Then, $|\mathbb{E}_{S,A}[R_S[A(S)] - R[A(S)]]| \leq \epsilon$.

Properties of update rules

We consider general update rules of the form $G: \Omega \to \Omega$ which map a point $w \in \Omega$ in the parameter space to another point G(w). The most common update is the gradient update rule $G(w) = w - \alpha \nabla f(w)$,

$$G(w) = w - \alpha \nabla f(w) ,$$

where $\alpha \ge 0$ is a step size and $f : \Omega \to \mathbb{R}$ is a function that we want to optimize.

Definition

An update rule is
$$\eta$$
-expansive if $\sup_{v,w\in\Omega} \frac{\|G(v)-G(w)\|}{\|v-w\|} \leq \eta$

Definition

An update rule is σ -bounded if $\sup_{w \in \Omega} ||w - G(w)|| \le \sigma$.

Egor Shulgin (MIPT, DCAM)

3

イロト イヨト イヨト イヨト

Lemma (Growth recursion)

Fix an arbitrary sequence of updates G_1, \ldots, G_T and another sequence G'_1, \ldots, G'_T . Let $w_0 = w'_0$ be a starting point in Ω and define $\delta_t = ||w'_t - w_t||$ where w_t, w'_t are defined recursively through

$$w_{t+1} = G_t(w_t)$$
 $w'_{t+1} = G'_t(w'_t)$. $(t > 0)$

Then, we have the recurrence relation $\delta_0 = 0$,

$$\delta_{t+1} \leq \begin{cases} \eta \delta_t & G_t = G'_t \text{ is } \eta \text{-expansive} \\ \min(\eta, 1) \delta_t + 2\sigma_t & G_t \text{ and } G'_t \text{ are } \sigma \text{-bounded}, \\ & G_t \text{ is } \eta \text{ expansive} \end{cases}$$

Definition

We say that f is L-Lipschitz if for all points u in the domain of f we have $\|\nabla f(x)\| \le L$. This implies that $|f(u) - f(v)| \le L \|u - v\|$.

Lemma

Assume that f is *L*-Lipschitz. Then, the gradient update $G_{f,\alpha}$ is (αL) -bounded.

Function properties

- convex: $f(u) \ge f(v) + \langle \nabla f(v), u v \rangle$
- γ -strongly convex: $f(u) \ge f(v) + \langle \nabla f(v), u v \rangle + \frac{\gamma}{2} \|u v\|^2$
- β -smooth: $\|
 abla f(u)
 abla f(v)\| \le \beta \|u v\| \ \forall \ u, v \in \Omega$

イロト イヨト イヨト

Lemma (Growth recursion)

Assume that f is β -smooth. Then the following properties hold.

- $G_{f,\alpha}$ is $(1 + \alpha\beta)$ -expansive.
- Assume in addition that f is convex. Then, for any $\alpha \leq 2/\beta$, the gradient update $G_{f,\alpha}$ is 1-expansive.
- Assume in addition that f is γ -strongly convex. Then, for $\alpha \leq \frac{2}{\beta + \gamma}$,

$$G_{f,\alpha}$$
 is $\left(1 - \frac{\alpha\beta\gamma}{\beta+\gamma}\right)$ -expansive.

Theorem

Assume that the loss function $f(\cdot; z)$ is β -smooth, convex and *L*-Lipschitz for every *z*. Suppose that we run SGM with step sizes $\alpha_t \leq 2/\beta$ for *T* steps. Then, SGM satisfies uniform stability with

$$\epsilon_{\mathrm{stab}} \leq \frac{2L^2}{n} \sum_{t=1}^T \alpha_t \,.$$

Strongly Convex optimization

 $L = \sup_{w \in \Omega} \sup_{z} \|\nabla f(w; z)\|_2$

Theorem

Assume that the loss function $f(\cdot; z)$ is γ -strongly convex and β -smooth for all z. Suppose we run the projected SGM iteration with constant step size $\alpha \leq 1/\beta$ for T steps. Then, SGM satisfies uniform stability with

$$\varepsilon_{
m stab} \le rac{2L^2}{\gamma n}$$

Theorem

Assume that the loss function $f(\cdot; z) \in [0, 1]$ is γ -strongly convex has gradients bounded by L as in, and is β -smooth function for all z. Suppose we run SGM with step sizes $\alpha_t = \frac{1}{\gamma t}$. Then, SGM has uniform stability of

$$\epsilon_{\rm stab} \le \frac{2L^2 + \beta\rho}{\gamma n}$$

Theorem

Assume that $f(\cdot; z) \in [0, 1]$ is an *L*-Lipschitz and β -smooth loss function for every *z*. Suppose that we run SGM for *T* steps with monotonically non-increasing step sizes $\alpha_t \leq c/t$. Then, SGM has uniform stability with

$$\epsilon_{ ext{stab}} \leq rac{1+1/eta c}{n-1} (2cL^2)^{rac{1}{eta c+1}} \, T^{rac{eta c}{eta c+1}}$$

In particular, omitting constant factors that depend on β , c, and L, we get

$$\epsilon_{\mathrm{stab}} \lesssim \frac{T^{1-1/(\beta c+1)}}{n}$$

• Weight Decay and Regularization

Definition

Let $f: \Omega \to \Omega$, be a differentiable function. We define the gradient update with weight decay at rate μ as $G_{f,\mu,\alpha}(w) = (1 - \alpha\mu)w - \alpha \nabla f(w).$

Lemma

Assume that f is β -smooth. Then, $G_{f,\mu,\alpha}$ is $(1 + \alpha(\beta - \mu))$ -expansive.

- Gradient Clipping
- Dropout
- Model Averaging.

Definition (Optimization error)

$$\epsilon_{\rm opt}(w) \stackrel{\text{def}}{=} \mathbb{E}\left[R_{\mathcal{S}}[w] - R_{\mathcal{S}}[w_{\star}^{\mathcal{S}}]\right] \text{ where } w_{\star}^{\mathcal{S}} = \arg\min_{w} R_{\mathcal{S}}[w].$$

 $\mathbb{E}[R[w]] \leq \mathbb{E}[R_{\mathcal{S}}[w]] + \epsilon_{\mathrm{stab}} \leq \mathbb{E}[R_{\mathcal{S}}[w_{\star}^{\mathcal{S}}]] + \epsilon_{\mathrm{opt}}(w) + \epsilon_{\mathrm{stab}}.$

Lemma

$$\mathbb{E}[R_{\mathcal{S}}[w_{\star}^{\mathcal{S}}]] \leq R[w_{\star}] \text{ where } w_{\star} = \arg\min_{w} R[w].$$

Theorem (classical result)

Assume we run stochastic gradient descent with constant stepsize α on a convex function $R[w] = \mathbb{E}_z[f(w; z)]$. Assume further that $\|\nabla f(w; z)\| \leq L$ and $\|w_0 - w_\star\| \leq D$ for some minimizer w_\star of R. Let \bar{w}_T denote the average of the T iterates of the algorithm. Then we have

$$R[\bar{w}_T] \leq R[w_\star] + \frac{1}{2} \frac{D^2}{T\alpha} + \frac{1}{2} L^2 \alpha \,.$$

Corollary (from classical result)

Let f be a convex loss function satisfying $\|\nabla f(w, z)\| \le L$ and let w_* be a minimizer of the population risk $R[w] = \mathbb{E}_z f(w; z)$. Suppose we make a single pass of SGM over the sample $S = (z_1, \ldots, z_n)$ with a suitably chosen fixed step size starting from a point w_0 that satisfies $\|w_0 - w_*\| \le D$. Then, the average \bar{w}_n of the iterates satisfies $\mathbb{E}[R[\bar{w}_n]] \le R[w_*] + \frac{DL}{\sqrt{n}}$.

Proposition

Let $S = (z_1, ..., z_n)$ be a sample of size *n*. Let *f* be a β -smooth convex loss function satisfying $\|\nabla f(w, z)\| \le L$ and let w_*^S be a minimizer of the empirical risk $R_S[w] = \frac{1}{n} \sum_{i=1}^n f(w; z_i)$. Suppose we run *T* steps of SGM with suitably chosen step size from a starting point w_0 that satisfies $\|w_0 - w_*^S\| \le D$. Then, the average \bar{w}_T over the iterates satisfies

$$\mathbb{E}[R[ar{w}_T]] \leq \mathbb{E}[R_S[w^S_\star]] + rac{DL}{\sqrt{n}}\sqrt{rac{n+2T}{T}}$$
 .