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Stochastic Gradient Method (SGM) for Machine Learning

Given n labeled examples S = (z1, . . . , zn) where zi ∈ Z , consider a
decomposable objective function

f (w) =
1

n

n∑
i=1

f (w ; zi ),

where f (w ; zi ) denotes the loss of w on the example zi . The stochastic
gradient update for this problem with learning rate αt > 0 is given by

wt+1 = Gf ,αt (wt) = wt − αt∇w f (wt ; zit ) .

Default method in practice

scalable

easy-to-implement

robust
works well across many diferent domains
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Stability of randomized iterative algorithms

D – unknown distribution over space Z . We receive a sample
S = (z1, . . . , zn) of n examples drawn i.i.d. from D. Our goal is to find a

model w with small population risk: R[w ]
def
= Ez∼D f (w ; z)

Empirical risk: RS [w ]
def
= 1

n

n∑
i=1

f (w ; zi )

Generalization error: RS [w ]− R[w ]

Expected generalization error: εgen
def
= ES,A[RS [A(S)]− R[A(S)]]

Definition

A randomized algorithm A is ε-uniformly stable if for all data sets
S ,S ′ ∈ Zn such that S and S ′ differ in at most one example, we have
supz EA [f (A(S); z)− f (A(S ′); z)] ≤ ε .

Theorem [Generalization in expectation]

Let A be ε-uniformly stable. Then, |ES ,A [RS [A(S)]− R[A(S)]]| ≤ ε .
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Properties of update rules

We consider general update rules of the form G : Ω→ Ω which map a
point w ∈ Ω in the parameter space to another point G (w). The most
common update is the gradient update rule G (w) = w − α∇f (w) ,

G (w) = w − α∇f (w) ,

where α ≥ 0 is a step size and f : Ω→ R is a function that we want to
optimize.

Definition

An update rule is η-expansive if sup
v ,w∈Ω

‖G(v)−G(w)‖
‖v−w‖ ≤ η

Definition

An update rule is σ-bounded if sup
w∈Ω
‖w − G (w)‖ ≤ σ .
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Properties of update rules

Lemma (Growth recursion)

Fix an arbitrary sequence of updates G1, . . . ,GT and another sequence
G ′1, . . . ,G

′
T . Let w0 = w ′0 be a starting point in Ω and define

δt = ‖w ′t − wt‖ where wt ,w
′
t are defined recursively through

wt+1 = Gt(wt) w ′t+1 = G ′t(w
′
t) . (t > 0)

Then, we have the recurrence relation
δ0 = 0,

δt+1 ≤


ηδt Gt = G ′t is η-expansive

min(η, 1)δt + 2σt Gt and G ′t are σ-bounded,

Gt is η expansive
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Expansion properties of stochastic gradients

Definition

We say that f is L-Lipschitz if for all points u in the domain of f we have
‖∇f (x)‖ ≤ L. This implies that |f (u)− f (v)| ≤ L‖u − v‖ .

Lemma

Assume that f is L-Lipschitz. Then, the gradient update Gf ,α is
(αL)-bounded.

Function properties

convex: f (u) ≥ f (v) + 〈∇f (v), u − v〉
γ-strongly convex: f (u) ≥ f (v) + 〈∇f (v), u − v〉+ γ

2‖u − v‖2

β-smooth: ‖∇f (u)−∇f (v)‖ ≤ β‖u − v‖ ∀ u, v ∈ Ω
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Expansion properties of stochastic gradients

Lemma (Growth recursion)

Assume that f is β-smooth. Then the following properties hold.

Gf ,α is (1 + αβ)-expansive.

Assume in addition that f is convex. Then, for any α ≤ 2/β, the
gradient update Gf ,α is 1-expansive.

Assume in addition that f is γ-strongly convex. Then, for α ≤ 2
β+γ ,

Gf ,α is
(

1− αβγ
β+γ

)
-expansive.

Egor Shulgin (MIPT, DCAM) Stability March 13, 2019 9 / 15



Convex optimization

Theorem

Assume that the loss function f (· ; z) is β-smooth, convex and L-Lipschitz
for every z . Suppose that we run SGM with step sizes αt ≤ 2/β for T
steps. Then, SGM satisfies uniform stability with

εstab ≤
2L2

n

T∑
t=1

αt .
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Strongly Convex optimization

L = supw∈Ω supz ‖∇f (w ; z)‖2

Theorem

Assume that the loss function f (· ; z) is γ-strongly convex and β-smooth
for all z . Suppose we run the projected SGM iteration with constant step
size α ≤ 1/β for T steps. Then, SGM satisfies uniform stability with

εstab ≤
2L2

γn

Theorem

Assume that the loss function f (· ; z) ∈ [0, 1] is γ-strongly convex has
gradients bounded by L as in, and is β-smooth function for all z . Suppose
we run SGM with step sizes αt = 1

γt . Then, SGM has uniform stability of

εstab ≤
2L2 + βρ

γn
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Non-convex optimization

Theorem

Assume that f (·; z) ∈ [0, 1] is an L-Lipschitz and β-smooth loss function
for every z . Suppose that we run SGM for T steps with monotonically
non-increasing step sizes αt ≤ c/t. Then, SGM has uniform stability with

εstab ≤
1 + 1/βc

n − 1
(2cL2)

1
βc+1T

βc
βc+1

In particular, omitting constant factors that depend on β, c, and L, we get

εstab /
T 1−1/(βc+1)

n
.
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Stability-inducing operations

Weight Decay and Regularization

Definition

Let f : Ω→ Ω, be a differentiable function. We define
the gradient update with weight decay at rate µ as
Gf ,µ,α(w) = (1− αµ)w − α∇f (w).

Lemma

Assume that f is β-smooth. Then, Gf ,µ,α is
(1 + α(β − µ))-expansive.

Gradient Clipping

Dropout

Model Averaging.
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Convex risk minimization

Definition (Optimization error)

εopt(w)
def
= E

[
RS [w ]− RS [wS

? ]
]

where wS
? = arg minw RS [w ].

E[R[w ]] ≤ E[RS [w ]] + εstab ≤ E[RS [wS
? ]] + εopt(w) + εstab.

Lemma

E[RS [wS
? ]] ≤ R[w?] where w? = arg minw R[w ].

Theorem (classical result)

Assume we run stochastic gradient descent with constant stepsize α on a
convex function R[w ] = Ez [f (w ; z)] . Assume further that ‖∇f (w ; z)‖ ≤ L
and ‖w0 − w?‖ ≤ D for some minimizer w? of R. Let w̄T denote the
average of the T iterates of the algorithm. Then we have

R[w̄T ] ≤ R[w?] + 1
2

D2

Tα
+ 1

2L
2α .
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Convex risk minimization

Corollary (from classical result)

Let f be a convex loss function satisfying ‖∇f (w , z)‖ ≤ L and let w? be a
minimizer of the population risk R[w ] = Ez f (w ; z). Suppose we make a
single pass of SGM over the sample S = (z1, . . . , zn) with a suitably chosen
fixed step size starting from a point w0 that satisfies ‖w0 − w?‖ ≤ D.
Then, the average w̄n of the iterates satisfies E[R[w̄n]] ≤ R[w?] + DL√

n
.

Proposition

Let S = (z1, . . . , zn) be a sample of size n. Let f be a β-smooth convex
loss function satisfying ‖∇f (w , z)‖ ≤ L and let wS

? be a minimizer of the
empirical risk RS [w ] = 1

n

∑n
i=1 f (w ; zi ). Suppose we run T steps of SGM

with suitably chosen step size from a starting point w0 that satisfies
‖w0 − wS

? ‖ ≤ D. Then, the average w̄T over the iterates satisfies

E[R[w̄T ]] ≤ E[RS [wS
? ]] + DL√

n

√
n+2T
T .
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