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Stochastic Gradient Method (SGM) for Machine Learning

Given n labeled examples S = (z1, ..., z,) where z; € Z, consider a
decomposable objective function

n

S

where f(w; z;) denotes the loss of w on the example z;. The stochastic
gradient update for this problem with learning rate a; > 0 is given by

Wiyl = Gf,at(Wt) =w — a:Vyf(we z;,) .

Default method in practice
@ scalable
@ easy-to-implement

@ robust
works well across many diferent domains
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Stability of randomized iterative algorithms

D — unknown distribution over space Z. We receive a sample

S =(z1,...,2,) of n examples drawn i.i.d. from D. Our goal is to find a

model w with small population risk: R[w] CE,p f(w; z)

e Empirical risk: Rs[w] %1 Z f(w; z)
1—1
o Generalization error. Rs[w] — R[w]

o Expected generalization error: €gen gef ]E57A[R5[A(5)] — R[A(9)]]

Definition

A randomized algorithm A is e-uniformly stable if for all data sets
5,5 € Z" such that S and S’ differ in at most one example, we have
sup, Ea[f(A(S); z) — F(A(S');2)] < e.

Theorem [Generalization in expectation]

Let A be e-uniformly stable. Then, |Es 4 [Rs[A(S)] — R[A(S)]]| < e.
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Properties of update rules

We consider general update rules of the form G: Q2 — Q which map a
point w € Q in the parameter space to another point G(w). The most
common update is the gradient update rule G(w) = w —aVf(w) ,

G(w)=w—aVf(w),

where a > 0 is a step size and f: 2 — R is a function that we want to
optimize.

[G(v)=G(w)]]

[v—wll

An update rule is n-expansive if sup
v,we

<

Definition

An update rule is o-bounded if sup |[w — G(w)| < o.
we

v
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Properties of update rules

Lemma (Growth recursion)

Fix an arbitrary sequence of updates Gy, ..., Gt and another sequence
Gi,..., G Let wy = w be a starting point in Q and define
0t = ||wf — we|| where wy, wy are defined recursively through

Wer1 = Ge(we) Wi = Gi(wy) . (t>0)
Then, we have the recurrence relation
0o = 0,

Nt G: = G is n-expansive

dt41 < ¢ min(n, 1) + 20+ Gy and G/ are o-bounded,
G; is 1) expansive
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Expansion properties of stochastic gradients

We say that f is L-Lipschitz if for all points u in the domain of f we have
IVFf(x)|| < L. This implies that |f(u) — f(v)| < L||ju— v||.

Lemma

Assume that f is L-Lipschitz. Then, the gradient update G, is
(aL)-bounded.

.

Function properties

@ convex: f(u) > f(v)+(VFf(v),u—v)
o 7-strongly convex: f(u) > f(v)+ (Vf(v),u—v)+ Z|lu—v|?
e [-smooth: |Vf(u) = V(W) <Bllu—v||Vuve

v
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Expansion properties of stochastic gradients

Lemma (Growth recursion)

Assume that f is 8-smooth. Then the following properties hold.

o Grq is (1 + af)-expansive.

@ Assume in addition that f is convex. Then, for any a <2/, the
gradient update Gr, is 1-expansive.

@ Assume in addition that f is y-strongly convex. Then, for a < /BL-M

Gr o is < — %)—expansive.
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Convex optimization

Theorem

Assume that the loss function f(-; z) is S-smooth, convex and L-Lipschitz
for every z. Suppose that we run SGM with step sizes a; < 2/3 for T
steps. Then, SGM satisfies uniform stability with

> T
Estab < o Qt .
t=1
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Strongly Convex optimization

L= SUPyeq SUP, HVf(W Zz H2

Assume that the loss function f(-; z) is 7-strongly convex and -smooth
for all z. Suppose we run the projected SGM iteration with constant step
size < 1/ for T steps. Then, SGM satisfies uniform stability with

212
€stab € —
yn

Theorem

Assume that the loss function f(-;z) € [0, 1] is y-strongly convex has
gradients bounded by L as in, and is 3-smooth function for all z. Suppose
we run SGM with step sizes oy = % Then, SGM has uniform stability of

212 + Bp
yn
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Non-convex optimization

Theorem

Assume that f(-; z) € [0,1] is an L-Lipschitz and -smooth loss function
for every z. Suppose that we run SGM for T steps with monotonically
non-increasing step sizes o < ¢/t. Then, SGM has uniform stability with

1+1/Bc
o —

2 1 Bc
€stab S (2CL )Bc+l TBC+1

In particular, omitting constant factors that depend on (3, ¢, and L, we get

T1-1/(Bc+1)

Estab ~ n
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Stability-inducing operations

@ Weight Decay and Regularization

Let f: Q — Q, be a differentiable function. We define
the gradient update with weight decay at rate y as

G pa(w) = (1 — ap)w — aVf(w).

Lemma
Assume that f is 3-smooth. Then, Gf , . is
(14 (B — p))-expansive.

@ Gradient Clipping
@ Dropout
@ Model Averaging.
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Convex risk minimization

Definition (Optimization error)

€opt (W) =) [Rs[w] — Rs[w;]] where w? = argmin,, Rs[w].

E[R[w]] < E[Rs[w]] + €stab < E[Rs[w?]] + €apt(w) + €stab-

E[Rs[w?]] < R[wy] where w, = arg min,, R[w].

Theorem (classical result)

Assume we run stochastic gradient descent with constant stepsize o on a
convex function R[w] = E,[f(w; z)] . Assume further that |Vf(w;z)|| < L
and ||wp — wy|| < D for some minimizer w, of R. Let wr denote the
average of the T iterates of the algorithm. Then we have
D2
— 1
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Convex risk minimization

Corollary (from classical result)

Let f be a convex loss function satisfying || Vf(w, z)|| < L and let w, be a
minimizer of the population risk R[w]| = E, f(w; z). Suppose we make a
single pass of SGM over the sample S = (zi, ..., z,) with a suitably chosen
fixed step size starting from a point wy that satisfies ||wy — wy|| < D.
Then, the average w,, of the iterates satisfies E[R[w,]] < R[wy] + % .

| \

Proposition

Let S =(z1,...,2,) be a sample of size n. Let f be a S-smooth convex
loss function satisfying || Vf(w,z)|| < L and let w2 be a minimizer of the
empirical risk Rs[w] = 1 S°7 | f(w; z). Suppose we run T steps of SGM
with suitably chosen step size from a starting point wy that satisfies

wo — w?|| < D. Then, the average Wt over the iterates satisfies

E[R[wr]] < E[Rs[wS]] + 5%, /22T .

4
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