Regularization

Victor Kitov

v.v.kit ov@yandex.ru

Table of Contents

- General regularization reminder
- Regularization for deep learning

Regularization

- Regularization any modification we make to the learning algorithm that is intended to reduce the generalization error, but not its training error.
- Overfitting training loss<<test loss.
 - very relevant to deep learning, having a lot of parameters.

Aims of regularization

- make underdetermined model determined¹
- improve generalization (performance on train may decrease)
 - by encoding prior domain knowledge
 - by solving bias-variance trade-off
 - reduces variance
 - at the expense of small bias increase
 - this can useful when
 - model space is large and complex (↓variance)
 - model space can approximate well the true model (bias is low)
 - example: decision trees, neural nets.

¹examples: linear regression estimated with LS, logistic regression

Types of regularization

- add restrictions on parameters
- add penalty to objective function (soft restriction)
- ensemble learning

Soft regularization

• Modified loss:

$$\tilde{J}(\theta) = J(\theta) + \alpha R(\theta)$$

- Specifics of neural networks:
 - On layer h: $i^{h+1} = \beta_0 + \sum \beta_k o_k^h$
 - bias term β_0 is usually not included in regularization
 - there are comparatively few bias terms
 - model will stay unbiased
 - we may use different α_h for different layers h = 1, 2, ... H.

L₂ regularization («weight decay»)

$$\tilde{J}(w, X, Y) = \frac{\alpha}{2} w^{\mathsf{T}} w + J(w, X, Y)$$

$$\nabla_{w}\tilde{J}(w,X,Y) = \alpha w + \nabla_{w}J(w,X,Y)$$

Stochastic gradient descent step:

$$w \leftarrow (1 - \varepsilon \alpha) w - \varepsilon \nabla_w J(w, X, Y)$$

Weights are shrunk towards zero.

• Write $\tilde{J}(w)$ for Taylor 2nd order approximation around $w^* = \arg \min_{w} J(w)$:

$$\widehat{J}(w) = J(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*) + \frac{\alpha}{2}w^T w$$

where $H = \nabla_w^2 J(w^*) \succeq 0$ and $\nabla_w J(w^*)^T (w - w^*) = 0$, because in minimum $\nabla_w J(w^*) = 0$.

- This expansion is precise for quadratic loss J(w) (e.g. MSE).
- Minimum is achieved when $\nabla \widehat{J}(\widetilde{w}) = 0$:

$$H(\tilde{w} - w^*) + \alpha \tilde{w} = 0$$

$$(H + \alpha I) \tilde{w} = Hw^*$$

$$\tilde{w} = (H + \alpha I)^{-1} Hw^*$$
(1)

• When $\alpha = 0$ $\tilde{w} = w^*$.

- $H = Q\Lambda Q^T$ (spectral decomposition), where
 - ullet Q is orthonormal basis of eigenvectors
 - Λ diagonal matrix with eigenvalues

- $H = Q\Lambda Q^T$ (spectral decomposition), where
 - Q is orthonormal basis of eigenvectors
 - Λ diagonal matrix with eigenvalues
- Substituting spectral decomposition into(1), we obtain:

$$\tilde{w} = (Q\Lambda Q^T + \alpha I)^{-1} Q\Lambda Q^T w^*$$

$$= \left[Q(\Lambda + \alpha I) Q^T \right]^{-1} Q\Lambda Q^T w^*$$

$$= Q(\Lambda + \alpha I)^{-1} \Lambda Q^T w^*$$

- $H = Q\Lambda Q^T$ (spectral decomposition), where
 - Q is orthonormal basis of eigenvectors
 - Λ diagonal matrix with eigenvalues
- Substituting spectral decomposition into(1), we obtain:

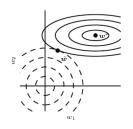
$$\tilde{w} = (Q\Lambda Q^T + \alpha I)^{-1} Q\Lambda Q^T w^*$$

$$= \left[Q(\Lambda + \alpha I) Q^T \right]^{-1} Q\Lambda Q^T w^*$$

$$= Q(\Lambda + \alpha I)^{-1} \Lambda Q^T w^*$$

- \tilde{w} is obtained by rescaling w^* along the eigenvectors.
 - along *i*-th eigenvector rescaling factor is $\frac{\lambda_i}{\lambda_i + \alpha}$
 - rescaling effect is
 - high for small λ_i
 - insignificant for large λ_i

Illustration of L_2 regularization effect



- Notation
 - Solid: iso-lines of J(w)
 - Dashed: iso-lines of $\frac{\alpha}{2} w^T w$
- w̄ equlibrium point
- Eigenvectors of *H*:
 - $v_1 = [1, 0], \lambda_1 \text{ is small} => |w_1^* \tilde{w}_1| \text{large}$
 - $v_2 = [0,1]$, λ_2 large $= |w_2^* \tilde{w}_2|$ small

Linear regression with L_2 regularization

$$y = x^{T} w$$

$$\widehat{w} = \arg \min_{w} \sum_{n=1}^{N} \left(x_{n}^{T} w - y_{n} \right)^{2} + \frac{\alpha}{2} w^{T} w$$

Solution:

$$\widehat{\mathbf{w}} = \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} + \alpha \mathbf{I} \right)^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{Y}$$

For centered features:

$$X^TX \propto Ncov[x, x], X^TY = Ncov[x, y]$$

 L_2 regularization «adds» lpha variance to each feature.

this forces estimator to reduce weights (based on cov[x,y])

L_1 norm regularization

$$\begin{split} \widetilde{J}(w) &= J(w) + \alpha \left\|w\right\|_1 \\ \nabla \widetilde{J}(w) &= \nabla J(w) + \alpha \operatorname{sign}(w) \end{split}$$
 When $\alpha > \sup_{w_i} \left|\nabla J(w)\right| \operatorname{SGD}$ will force $w_i \to 0$.

11/68

Effect of L_1 regularization on solution

- To get analytical solution need to assume that Hessian is diagonal.
- Consider 2nd order Taylor approximation to $\widehat{J}(w)$:

$$\widehat{J}(w) = J(w^*) + \sum_{i} \left[\frac{1}{2} H_{i,i} (w_i - w_i^*)^2 + \alpha |w_i| \right]$$

Solution²:

$$w_i = \operatorname{sign}(w_i^*) \max \left\{ \left| w_i^* - \frac{\alpha}{H_{i,i}} \right|, 0 \right\}$$

- Analysis:
 - solution is sparse (many w_i may be 0)
 - ullet shift in weights is smaller along directions with high $H_{i,i}$
 - $\frac{\alpha}{H_{i,i}} > w_i^*$: regularizer dominates J(w) improvements.

 $^{^{2}}L_{2}$ regularized solution would be here $w_{i}=rac{H_{i,i}}{H_{i,i}+lpha}w_{i}^{*}$

L_1 regularizer: feature selection

- $||w||_1$ regularizer will do feature selection.
- Consider

$$\widetilde{J}(w) = J(w) + \alpha \sum_{d=1}^{D} |w_d|$$

- if $\alpha>\sup_{w}\left|\frac{\partial J(w)}{\partial w_{i}}\right|$, then it becomes optimal to set $w_{i}=0$
- ullet For higher lpha more weights will become zeroes.

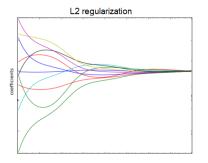
L_2 regularizer: no feature selection

• Consider $R(w) = \frac{\alpha}{2} \|w\|_2^2 = \frac{\alpha}{2} \sum_d w_d^2$

$$\widetilde{J}(w) = J(w) + \frac{\alpha}{2} \sum_{d=1}^{D} w_d^2$$

• $\frac{\partial R(w)}{\partial w_i} = \alpha w_i \to 0$ when $w_i \to 0$.

Illustration



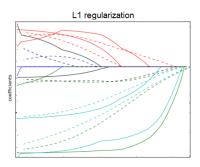
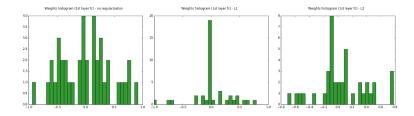


Table of Contents

- General regularization reminder
- 2 Regularization for deep learning
 - Constrained optimization
 - Dataset augmentation
 - Adding noise
 - Semi-supervised, multitask approaches
 - Dense-sparse-dense training
 - Early stopping
 - Sparse representation
 - Dropout
 - Batch normalization
 - Weights initialization

Example of unregularized, L_1 and L_2 regularized weights



- Regularization for deep learning
 - Constrained optimization
 - Dataset augmentation
 - Adding noise
 - Semi-supervised, multitask approaches
 - Dense-sparse-dense training
 - Early stopping
 - Sparse representation
 - Dropout
 - Batch normalization
 - Weights initialization

Constrained optimization

$$\tilde{J}(\theta) = J(\theta) + \alpha R(\theta) \rightarrow \min_{\theta}$$

is equivalent to constrained maximization task for some $\gamma=\gamma(\alpha)$:

$$\begin{cases} J(\theta) \to \min_{\theta} \\ R(\theta) \le \gamma \end{cases} \tag{2}$$

$$\alpha \downarrow \Longleftrightarrow \gamma \uparrow$$

To solve (2) repeat:

$$\theta \leftarrow \theta - \varepsilon \nabla J(\theta)$$
 (or any other optimization update) project θ onto region $\{\theta : R(\theta) \le \gamma\}$

When to use constrained optimization

- Penalty addition may force algorithm get stuck in local optima around zero:
 - causing «dead units» with very small weights
 - inefficient local solution
- Constrained maximization has no such problem
- Constrained maximization: more stable
 - weights cannot take arbitrary values
 - may use higher learning rate!

Constrained optimization

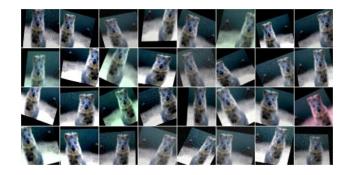
- We can impose constraints on:
 - all weights
 - all weights within each layer
 - all incoming weights to each neuron
- Bias weights are usually not constrained.

- Regularization for deep learning
 - Constrained optimization
 - Dataset augmentation
 - Adding noise
 - Semi-supervised, multitask approaches
 - Dense-sparse-dense training
 - Early stopping
 - Sparse representation
 - Dropout
 - Batch normalization
 - Weights initialization

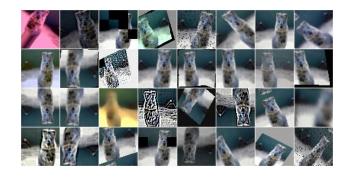
Dataset augmentation

- Dataset augmentation applying a wide array of domain-specific invariant transformations to synthetically expand a training set.
- More data more accurate model.
- Examples for image classification:
 - translation, scaling, cropping
 - reflection
 - counterexample: b->d
 - rotation
 - not big, otherwise 6->9, p->d
 - adding small random noise
- See more invariant transformations here.

Examples of augmented images



Examples of augmented images



Regularization for deep learning

- Constrained optimization
- Dataset augmentation
- Adding noise
- Semi-supervised, multitask approaches
- Dense-sparse-dense training
- Early stopping
- Sparse representation
- Dropout
- Batch normalization
- Weights initialization

Adding noise

- Add noise to inputs
 - solution becomes robust to input noise
- Add noise to hidden unit inputs
 - this is dataset augmentation with different levels of abstraction
- Add noise to weights (=adding it to gradient)
 - pushes weights to «plateu» regions where small weight changes do not affect output

Add noise to gradient³

$$\nabla J(\theta) \leftarrow \nabla J(\theta) + N(0, \sigma_t)$$

Recommended schedule:

$$\sigma_t = rac{\eta}{(1+t)^{\gamma}}$$

where $\eta \in \{0.01, 0.3, 1.0\}$, $\gamma = 0.55$.

Improvements obtained:

- for networks with poor initialization (all zeroes)
- for very deep networks
- for memory networks

³Neelakantan, Arvind et al. Adding Gradient Noise Improves Learning for Very Deep Networks. 2015.

Add noise to outputs

- When incorrect labels y are present the model may overfit to them.
- Idea: to force model not to take y too seriously slightly spread y over all classes.
- For (x_n, y_n) replace hard targets with soft targets:

Smoothed likelihood:

Regularization for deep learning

- Constrained optimization
- Dataset augmentation
- Adding noise
- Semi-supervised, multitask approaches
- Dense-sparse-dense training
- Early stopping
- Sparse representation
- Dropout
- Batch normalization
- Weights initialization

Semi-supervised learning

- In semi-supervised learning we use:
 - labelled data $(x_1, y_1), ...(x_N, y_N)$
 - unlabelled data $x_{N+1}, ... x_{N+M}$.
- Motivation:
 - labelling is expensive
 - N is small and $M \gg N$.
 - p(x) and p(y|x) have shared parametrization.

Semi-supervised learning - neural nets⁴

$$\mathcal{L}_{\textit{hybrid}}(X,Y) = \mathcal{L}_{\textit{disc}}(X,Y) + \gamma \mathcal{L}_{\textit{unsup}}(X)$$

where

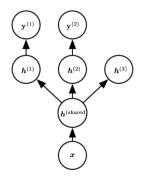
- $\mathcal{L}_{disc}(X,Y) = \sum_{n=1}^{N} \ln p(y_n|x_n)$ discriminative log-likelihood
- $\mathcal{L}_{unsup}(X,Y) = \sum_{n=1}^{N+M} \ln p(x_n)$ unsupervised log-likelihood
- ullet γ trade-off hyperparameter (tuned on validation set)

Results:

- In article Bolzmann machines were used
- Significant reduction of error-rate on MNIST, 20 newsgroups.

⁴Larochelle, H. and Bengio, Y. (2008). Classification using discriminative restricted Boltzmann machines. In ICML'2008.

Multi-task learning

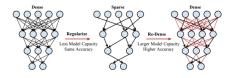


- Applicable when several tasks have shared factors.
- Statistical benefit more accurate estimation

- Regularization for deep learning
 - Constrained optimization
 - Dataset augmentation
 - Adding noise
 - Semi-supervised, multitask approaches
 - Dense-sparse-dense training
 - Early stopping
 - Sparse representation
 - Dropout
 - Batch normalization
 - Weights initialization

Dense-sparse-dense training⁵

- initial regular training, but with the main purpose of seeing which weights are important, not learning the final weight values.
- Orop the connections where the weights are under a particular threshold. Retrain the sparse network to learn the weights of the important connections.
- Make the network dense again and retrain it using small learning rate, a step which adds back capacity.



• Improves AlexNet, GoogleNet, ResNet performance.

⁵https://arxiv.org/pdf/1607.04381v1.pdf

Algorithm

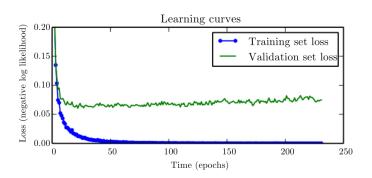
```
Initialization: W^{(0)} with W^{(0)} \sim N(0, \Sigma)
Output: W^{(t)}.

    Initial Dense Phase -

while not converged do
    \tilde{W}^{(t)} = W^{(t-1)} - \eta^{(t)} \nabla f(W^{(t-1)}; x^{(t-1)});
    t = t + 1:
end
                                        ------ Sparse Phase -
S = sort(|W^{(t-1)}|); \lambda = S_{k}; Mask = \mathbb{1}(|W^{(t-1)}| > \lambda);
while not converged do
    \tilde{W}^{(t)} = W^{(t-1)} - \eta^{(t)} \nabla f(W^{(t-1)}; x^{(t-1)});
    \tilde{W}^{(t)} = W^{(t)} \cdot Mask;
    t = t + 1;
end
                                           ------ Final Dense Phase -
while not converged do
    \tilde{W}^{(t)} = W^{(t-1)} - \eta^{(t)} \nabla f(W^{(t-1)}; x^{(t-1)});
    t = t + 1:
end
goto Sparse Phase for iterative DSD;
```

- Regularization for deep learning
 - Constrained optimization
 - Dataset augmentation
 - Adding noise
 - Semi-supervised, multitask approaches
 - Dense-sparse-dense training
 - Early stopping
 - Sparse representation
 - Dropout
 - Batch normalization
 - Weights initialization

Early stopping



Early stopping

- Needs separate validation set.
- Is similar to weight decay (from close to zero initialization).
- Parameters:
 - period of steps (P) when validation performance is reevaluated
 - smaller period more accurate, but more computationally intensive
 - after how many **«bad» evaluations** (quality didn't improve) set to stop
 - if small may stop too early due to noisy performance estimation.
- In practice model is evaluated fixed amount of epochs, but serialized every P epochs.

Early stopping - utilizing validation set

Early stopping returned:

- optimal number of steps i*
- ullet optimal parameters $heta^*$
- ullet performance on validation P_{val} and train P_{train}

Two approaches how to utilize validation set:

- reinitialize NN and run i^* steps using training+validation set.
 - use the same number of passes through objects or dataset (epochs)?
- ② continue training NN with initialization θ^* on the validation set until quality on validation reaches P_{train} .
 - may not reach

- Regularization for deep learning
 - Constrained optimization
 - Dataset augmentation
 - Adding noise
 - Semi-supervised, multitask approaches
 - Dense-sparse-dense training
 - Early stopping
 - Sparse representation
 - Dropout
 - Batch normalization
 - Weights initialization

Sparse representation

- Suppose
 - \bullet θ is a vector of estimated model parameters
 - h is inner representation:
- Optimized criterion in sparse representation becomes:

$$\widetilde{J}(\theta) = J(\theta) + \alpha R(h(\theta)) \to \min_{\theta}$$

where R(h) is sparsity provoking prior such as $R(h) = \sum_i |h_i|$.

Example of sparse representation: sparse coding

- Definitions:
 - ullet $X \in \mathbb{R}^{\mathit{NxD}}$ design matrix
 - $D \in \mathbb{R}$ dictionary matrix (rows-code words)
 - ullet $W\in\mathbb{R}$ representation matrix (rows-object representations)
- Sparse coding is found with optimization task:

$$||X - WD||_2^2 + ||W||_1 \to \min_{D,W}$$

where
$$\|A\|_2^2 := \sum_{i,j} a_{i,j}^2$$
 and $\|A\|_1 := \sum_{i,j} |a_{i,j}|$.

Sparse coding: estimation

Sparse coding is found with optimization task:

$$||X - WD||_2^2 + ||W||_1 \to \min_{D,W}$$
 (3)

 Task (3) is not convex with respect to D, W but is convex with respect to D or W only (holding another matrix fixed).

$\underline{\mathsf{INPUT}}$: design matrix X

initialize *D* randomly while stop condition not met:

$$W = \arg\min_{W} \|X - WD\|_{2}^{2} + \|W\|_{1}$$

$$D = \arg\min_{D} \|X - WD\|_{2}^{2} + \|W\|_{1}$$

OUTPUT: dictionary D and sparse representation W

- For W solve N LASSO regressions (for each row of W)
- For D solve K OLS regressions (for each column of D)

Sparse coding: encoder & decoder

- Sparse coding is MSE-based sparse autoencoder.
- ullet Suppose we get some observation x
- Encoder $x \to w$
 - dictionary D is fixed
 - solve 1 LASSO regression:

$$\left\|x^{T} - w^{T}D\right\|^{2} + \left\|w\right\|_{1} \to \min_{w}$$

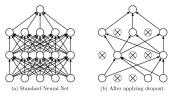
- Decoder $w \to \hat{x}$:
 - $\hat{x}^T = w^T D$

- Regularization for deep learning
 - Constrained optimization
 - Dataset augmentation
 - Adding noise
 - Semi-supervised, multitask approaches
 - Dense-sparse-dense training
 - Early stopping
 - Sparse representation
 - Dropout
 - Batch normalization
 - Weights initialization

Dropout idea

Each node in the neural network is removed with probability 1-p independently from decisions about other nodes:

Comparison neural net without/with dropout



- Output layer nodes are never removed.
- Recommended parameters:
 - p = 0.5 for inner layer nodes
 - p = 0.8 for input layer nodes (feature subsampling)
- Removal probabilities can be finetuned on cross-validation.

Dropout motivation

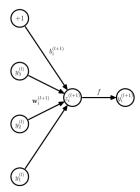
- Motivation from genetic theory of evolution:
 - sexual reproduction involves taking half the genes of one parent and half of the other.
 - best fit genes get mixed with 0.5 probabilities
 - best genes should learn "by themselves", not relying on complex outer gene structure
 - less ovefitting
- Construction works
 - team of workers and the overall goal is to learn how to erect a building
 - if each of the workers is overly specialized, if one gets sick or makes a mistake, the whole building will be severely affected
 - pick randomly every week some of the workers and send them to business trip during training.
 - team becomes more resilient to noise or workers being on vacation.

Deep learning motivation

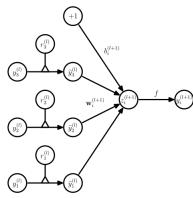
- nodes rely less on outputs of other nodes
- try more to learn something by themselves
- behave in a more robust way
- resulting network becomes less overfitted.

Dropout algorithm

Comparison of usual and dropout network for one node



(a) Standard network



(b) Dropout network

Definitions

Define:

- f(x) an activation function.
- y^I vector of outputs at layer I
- z^I vector of inputs to layer I
- a * b defines element-wise product of elements.
- L number of layers in neural network
- $y^{(0)} = x$ input feature vector
- Bernoulli(p) returns a vector of independent Bernoulli random variables with parameter p.

Forward propagation algorithm

We need to repeat forward propagation recurrently for I = 0, 1, ...L - 1.

Usual feed-forward neural network:

$$z_i^{(l+1)} = w_i^{(l+1)} y^l + b_i^{(l+1)}$$

$$y_i^{(l+1)} = f(z_i^{(l+1)})$$

Peed-forward network with dropout:

$$r_{j}^{(I)} \sim Bernoulli(p)$$
 $\tilde{y}^{I} = r^{(I)} * y^{(I)}$
 $z_{i}^{(I+1)} = w_{i}^{(I+1)} \tilde{y}^{I} + b_{i}^{(I+1)}$
 $y_{i}^{(I+1)} = f(z_{i}^{(I+1)})$

Application of dropout

Learning

- while weights not converge:
 - sample random subnetwork ("thinned network") with dropout
 - apply one step of stochastic gradient descent to thinned network

Comment: due to weights sharing across all thinned networks the number of parameters is the same as in original network.

Application of dropout

Prediction

- use full networks with all nodes, but multiply each weight by p^6 .
- such scaling will yield the same output as average thinned network.

Comments:

- $p \ge 0.5$
- p higher if applied to input layer.

⁶precise for networks without non-linearities. With non-linearities Monte-Carlo sampling may work better.

Complexity

- O(W) operations during each step to generate binary mask.
- \bullet O(W) memory to store the mask
- Complexity of forward and backward pass the same
- BUT: total number of steps until convergence may increase
 - dropout shrinks model capacity
 - to offset this, need to increase the network, make more optimization steps

Modifications

- Additive Gaussian noise:
 - $h_i \leftarrow h_i * N(1,1)$
 - at test time: no scaling needed
- Dropconnect

Conclusion

- Dropout behaves similar to generating 2^W networks and taking weighted average of their predictions (W is the number of weights in the original neural network).
- Dropout performes intelligent high-level information destruction
 - model becomes more robust (at high levels of abstraction as well)
- Properties:
 - number of parameters is the same
 - training complexity is reduced
 - complexity of prediction is the same
- Dropout provides accuracy improvement in many domains.
- More details in: "Dropout: A Simple Way to Prevent Neural Networks from Overfitting". Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov. Journal of Machine Learning/Research 15 (2014) 1929-1958.

- Regularization for deep learning
 - Constrained optimization
 - Dataset augmentation
 - Adding noise
 - Semi-supervised, multitask approaches
 - Dense-sparse-dense training
 - Early stopping
 - Sparse representation
 - Dropout
 - Batch normalization
 - Weights initialization

Problems solved by batch normalization⁷

- Weights in the network are updated jointly. Let some weight
 w_i be improved by step of SGD. This improvement may get
 lost, because simultaneously other weight were updated.
- In the context of other updated weights performed update of w_i may lose sense.
- In short: distribution of neuron outputs change making it hard to keep weight up-to-date.
- Consequences:
 - Slows down convergence
 - Need to use smaller error rate
 - If using saturating activations this may lead to neuron saturation.
 - Hard to choose proper initialization to omit these saturations.

⁷Sergey Ioffe, Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. 2015.

Batch normalization

- Idea of method: standardize outputs of neurons
 - i.e. input features and outputs of hidden neurons
- Benefits:
 - Gradient becomes invariant to scale of neuron outputs.
 - Distribution of inputs is preserved.
 - Can ensure staying away from neuron saturation regions
 - May use higher learning rates
- Approach has beaten state-of-the-art ImageNet model (2015).

Training algorithm

For minibatch $x_1,...x_m$ of m random objects:

- find minibatch mean
- find minibatch std. deviation
- normalize all samples of the minibatch.
- form output as $y_i = \gamma \hat{x}_i + \beta$ (γ and β are additional parameters that are learned).

$$\begin{split} & \textbf{Input:} \ \ \, \text{Values of } x \text{ over a mini-batch: } \mathcal{B} = \{x_{1...m}\}; \\ & \text{Parameters to be learned: } \gamma, \beta \\ & \textbf{Output:} \ \, \{y_i = \text{BN}_{\gamma,\beta}(x_i)\} \\ & \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \\ & \text{$// mini-batch mean} \\ & \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \\ & \text{$// mini-batch variance} \\ & \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \\ & \text{$// mini-batch variance} \\ & \hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \\ & \text{$// mini-batch variance} \\ & \hat{x}_i \leftarrow \hat{x}_i - \hat{x}_i$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Derivatives for back-propagation

$$\frac{\partial \ell}{\partial \widehat{x}_{i}} = \frac{\partial \ell}{\partial y_{i}} \cdot \gamma$$

$$\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot (x_{i} - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^{2} + \epsilon)^{-3/2}$$

$$\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} = \left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}\right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m} -2(x_{i} - \mu_{\mathcal{B}})}{m}$$

$$\frac{\partial \ell}{\partial x_{i}} = \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{2(x_{i} - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m}$$

$$\frac{\partial \ell}{\partial \gamma} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}} \cdot \widehat{x}_{i}$$

$$\frac{\partial \ell}{\partial \beta} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}}$$

Batch normalization: algorithm

```
Input: Network N with trainable parameters \Theta;
           subset of activations \{x^{(k)}\}_{k=1}^{K}
Output: Batch-normalized network for inference, N_{\rm BN}^{\rm inf}
 1: N_{\rm BN}^{\rm tr} \leftarrow N // Training BN network
2: for k=1...K do

3: Add transformation y^{(k)}=\mathrm{BN}_{\gamma^{(k)},\beta^{(k)}}(x^{(k)}) to
N_{\rm BN}^{\rm tr} (Alg. 1)
4: Modify each layer in N_{\rm BN}^{\rm tr} with input x^{(k)} to take
```

- $y^{(k)}$ instead 5: end for
- 6: Train $N_{\mathrm{BN}}^{\mathrm{tr}}$ to optimize the parameters $\Theta \cup \{\gamma^{(k)}, \beta^{(k)}\}_{k=1}^{K}$ 7: $N_{\mathrm{BN}}^{\mathrm{inf}} \leftarrow N_{\mathrm{BN}}^{\mathrm{tr}}$ // Inference BN network with frozen
 - // parameters

Prediction

At prediction x_i is shifted by $\mathbb{E}x_i$ and scaled by $\sqrt{Var[x_i]}$ obtained by averaging their estimates for all minibatches.

- 8: **for** k = 1 ... K **do**
- 9: // For clarity, $x \equiv x^{(k)}$, $\gamma \equiv \gamma^{(k)}$, $\mu_{\mathcal{B}} \equiv \mu_{\mathcal{B}}^{(k)}$, etc.
 10: Process multiple training mini-batches \mathcal{B} , each of
- 10: Process multiple training mini-batches \mathcal{B} , each of size m, and average over them:

$$\begin{aligned} \mathbf{E}[x] \leftarrow \mathbf{E}_{\mathcal{B}}[\mu_{\mathcal{B}}] \\ \mathbf{Var}[x] \leftarrow \frac{m}{m-1} \mathbf{E}_{\mathcal{B}}[\sigma_{\mathcal{B}}^2] \end{aligned}$$

- In $N_{\mathrm{BN}}^{\mathrm{inf}}$, replace the transform $y = \mathrm{BN}_{\gamma,\beta}(x)$ with $y = \frac{\gamma}{\sqrt{\mathrm{Var}[x] + \epsilon}} \cdot x + \left(\beta \frac{\gamma \, \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}}\right)$
- 12: end for

Algorithm 2: Training a Batch-Normalized Network

- Regularization for deep learning
 - Constrained optimization
 - Dataset augmentation
 - Adding noise
 - Semi-supervised, multitask approaches
 - Dense-sparse-dense training
 - Early stopping
 - Sparse representation
 - Dropout
 - Batch normalization
 - Weights initialization

Random weights initialization

- random with distribution $w_i \sim F(0, \sigma^2)$, having
 - zero mean
 - varaince equal to $\frac{1}{n_{in}}$ or $\frac{2}{n_{in}+n_{out}}$ where
 - n_{in} is the number of incoming connections for neuron i.
 - n_{out} is the number of outgoing connections for neuron i.

Weights initialization with unsupervised pretraining

Unsupervised pretraining:

- Train an autoencoder.
- Initialize first layers of supervised network with autoencoder weights.

Comments:

- was used in the first works on deep learning
- now not very popular, random schemes are used or initialization from supervised nets for similar tasks.

Conclusion

Most popular regularization strategies:

- early stopping
- batch normalization
- dropout
- L_1/L_2 regularization.