МНОГОФАКТОРНЫЙ МЕТОД ГЕОЭКОЛОГООХРАННОГО ПРОГНОЗИРОВАНИЯ.

ХАЙРЕТДИНОВ М.С.*1, АГАФОНОВ В.М.², КОВАЛЕВСКИЙ В.В.³ ВОСКОБОЙНИКОВА Г.М.⁴ ¹MARAT@OPG.SSCC.RU, ²AGVADIM@YANDEX.RU, ^{3KOVALEVSKY@SSCC.RU}, ⁴GULYA@OPG.SSCC.RU

НОВОСИБИРСК, ИНСТИТУТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ГЕОФИЗИКИ СО РАН,

² МОСКВА, МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

12 – я МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ «ИНТЕЛЛЕКТУАЛИЗАЦИЯ ОБРАБОТКИ ИНФОРМАЦИИ»

ГАЭТА, 2018

ПЛАН ДОКЛАДА

- × 1.Введение геовибрационные технологии
- 2. Многофакторная проблема прогнозирования геоэкологических рисков от техногенных и природных взрывов
 - 4. Метеозависимые факторы оценивания рисков
 - 5. Роль пространственной фокусировки акустических колебаний в увеличении геоэкологических рисков для социальной среды.
 - 6. Результаты экспериментов по оцениванию рисков.
 - 7. Заключение
 - 8. Список публикаций

ВИБРАЦИОННЫЕ ГЕОТЕХНОЛОГИИ В РЕШЕНИИ НАУЧНО-ПРАКТИЧЕСКИХ ПРОБЛЕМ

- Вибрационные геотехнологии- современные экологически безопасные технологии, предназначенные для активного мониторинга и контроля параметров окружающей природной среды в интересах решения широкого круга народнохозяйственных и научных задач.
- Основаны на использовании сейсмических вибраторов в качестве источников сейсмических, акустических, электромагнитных колебаний с высокоточными силовыми, фазо-частотными и временными характеристиками. Используются в комплексе с программно-техническими системами регистрации, обработки и интерпретации геофизических данных.
- Цель рассмотрения: технологии оценивания и прогнозирования геоэкологических рисков от природных и техногенных (карьерных, полигонных) взрывов с использованием сейсмоакустических колебаний сейсмических вибраторов.
- Соответствие критической технологиии РФ: 19. Технологии мониторинга и прогнозирования состояния окружающей среды.

Типы источников акустических колебаний

4

Взрывы, транспортные шумы

TYPES OF THE ACOUSTIC OSCILLATIONS SOURCES

регистрация акустических волн на угольных карьерах Кузбасса

Карта расстановки сейсмодатчиков 1-8 по отношению к карьерному взрыву (разрез Виноградовский, Кузбасс).

СЕЙСМИЧЕСКИЕ И АКУСТИЧЕСКИЕ ВОЛНЫ ОТ РАЗНЫХ ИСТОЧНИКОВ

ГЕОЭКОЛОГИЧЕСКИЕ РИСКИ ИНФРАЗВУКОВЫХ ВОЛН ОТ МОЩНЫХ ВЗРЫВОВ

В качестве интегральной характеристики при изучении разрушительных свойств инфразвука от взрывов для окружающей среды принимается удельная плотность акустической энергии:

$$E = \frac{1}{\rho c} \int_{0}^{t} p^{2}(t) dt.$$
 (1)

Здесь *рс* является волновым импедансом, для воздуха равным

42 г/(см²·с); p(t)- акустическое давление, которое создает распространяющаяся акустическая волна; T - ее длительность. Акустическое давление одновременно является функцией многих параметров: мощности излучения и расстояния, метеопараметров и неоднородности атмосферы, характеристик покрова и пересеченности дневной поверхности Земли, влияющих на распространение акустических колебаний. Задача определения (1) носит многофакторный характер.

МНОГОФАКТОРНАЯ МОДЕЛЬ ОЦЕНИВАНИЯ ГЕОЭКОЛОГИЧЕСКИХ РИСКОВ

Многофакторная модель интегрального давления как уравнение энергетического баланса:

$$P_{\Sigma}(t, f, r) = P_{U}(f) + P_{abs} + P_{memeo}(e, \tau, \omega, \varphi) + P_{c\phiep} + P_{noe}$$

 $P_{\Sigma}(t, f, r)$ – давление в точке регистрации на удалении *r* от источника;

 $P_{M}(f)$ – частотно зависимое акустическое давление от вибратора; P_{abs} – поглощение инфразвука по расстоянию;

 $P_{memeo}(e, \tau, \omega, \varphi)$ – давление, как функция метеопараметров:

относительной влажности, температуры, направления и силы ветра;

φ- угол между направлением ветра и волновым фронтом от источника;

P_{cdep} – сферическая расходимость волнового фронта;

Рпов – вариации давления из-за поглощения дневной

поверхностью Земли.

Недостаточность априорных сведений ограничивает возможности получения оценок (1) в численном виде.

Альтернативный вариант-использование тестирующих акустосейсмических колебаний вибрационного источника с калиброванными параметрами с привязкой к реальным условиям распространения обоих типов волн. Это позволяет получать прогнозные оценки геоэкологических рисков (1).

ВИБРАЦИОННЫЕ ИСТОЧНИКИ В ПРОБЛЕМЕ ПРОГНОЗИРОВАНИЯ ГЕОЭКОЛОГИЧЕСКИХ РИСКОВ ОТ МОЩНЫХ ВЗРЫВОВ

Низкочастотные сейсмические вибраторы предлагаются в качестве инструмента для прогнозирования геоэкологических рисков на основе одновременного зондирования смежных сред «земля-атмосфера» в условиях воздействия комплекса природных факторов.

Предпосылки применения вибраторов для проведения исследований:

• Многократно уменьшенная мощность вибраторов в сравнении со взрывами, что определяет их экологическую чистоту;

ж Высокие метрологические силовые и частотно-временные характеристики

• Эквивалентность откликов сред в ответ на зондирование вибраторами и взрывамиопределяет приемственность методов интерпретации, ранее созданных для традиционных взрывных технологии;

 Способность вибраторов одновременно порождать акустические колебания в атмосфере и сейсмические в земле.

• Представлены методологический подход, а также результаты экспериментальных и теоретических исследований по оцениванию влияния метеопараметров на распространение сейсмических и акустических волн от вибраторов, полигонных и карьерных взрывов в интересах геоэкологического прогнозирования, .

ИЗЛУЧЕНИЕ СЕЙСМИЧЕСКИХ И АКУСТИЧЕСКИХ ВОЛН ВИБРАЦИОННЫМ ИСТОЧНИКОМ

Зональность акустического зондирования:вычисленные высотные профили распространения инфразвука в атмосфере и акустические волны от вибратора ЦВ-40 на 100-км профиле

Results of experiments on the detection of waves from the seismic CV-40 vibrator at distances of 0.2, 10, 48, and 90 km: acoustic waves; at a distance of 48 km for the x, y, z components of the seismic sensor a time of 8.27 s corresponds to the arrivals of longitudinal seismic waves, and a

Time (s)

90 km a

Графики затухания сейсмических и акустических волн в инфразвуковом диапазоне частот в диапазоне расстояний 0-100 км.

13

ДОСТОИНСТВО ИНФРАНИЗКИХ ЧАСТОТ В ПРОБЛЕМЕ АКТИВНОГО ГЕОФИЗИЧЕСКОГО МОНИТОРИНГА

3 диапазоне дальностей 0-100 км затухание силы инфразвука юставляет 40 дб (0.4дб/км). Это означает, что на инфранизких астотах ослабление силы звука по расстоянию практически пределяется геометрическим расхождением фронта волны. Следовательно, фактор поглощения акустической энергии в этмосфере при этом играет менее существенную роль. Это пределяет ценность применения инфранизких частот для эешения практических задач геофизического мониторинга, в астности, в изучении проблемы взаимодействия еофизических полей, рассматриваемой в данной работе.

1. СВЯЗЬ ИНТЕГРАЛЬНОГО ДАВЛЕНИЯ С МЕТЕОФАКТОРАМИ: НАПРАВЛЕНИЕ И СКОРОСТЬ ВЕТРА, ТЕМПЕРАТУРА, ВЛАЖНОСТЬ

Уравнение состояния $f(p, \rho, t) = 0$

Скорость звука по Лапласу:

$$c_{\Pi} = \sqrt{\gamma \cdot \frac{p}{\rho}} \longrightarrow p = \frac{\rho}{\gamma} c_{\Pi}^{2}, \quad \gamma = \frac{c_{P}}{c_{V}}$$

где C_p - удельная теплоемкость при постоянном давлении, C_v – удельная теплоемкость при постоянном объеме.

$$c_o = 20.1 \sqrt{T \left(1 + 0.273 \frac{e}{p} \right)}$$
, скорость звука во влажном воздухе

e – влажность воздуха, $T = t + T_o$, где $T_o = 273K$; $C_o = 331$ м/с при $T = T_o = 273K$

$$c = c_0 + w_0 \cos\varphi$$
$$p = \frac{\rho}{\gamma} (c_0 + 0.6t + 0.07e + w_0 \cos\varphi)^2$$

ФАКТОР 2: РАСЧЕТНЫЙ ФАКТОР ФОКУСИРОВКИ АКУСТИЧЕСКИХ ВОЛН В ПРОСТРАНСТВЕ С УЧЕТОМ ВЕТРА

f = I [z,θ,φ]/I₀ – фактор фокусировки = отношению интенсивности звука в неоднородной движущейся среде к интенсивности звука в неподвижной однородной среде (Бреховских Л.М., 1973).

Зависимость фактора фокусировки f от горизонтального расстояния от источника r и азимута α точки наблюдения: Расчетные графики для радиуса круговой расстановки датчиков с радиусом 12 км и скоростей ветра 6 м/с (синяя кривая) и 4м/с (зеленая кривая). Высота источника над землей-5 м. Красная кривая : экспериментальная для той же расстановки, скорость ветра 4-6 м/с. Изучение эффекта пространственной фокусировки акустических колебаний: круговая расстановка датчиков вокруг взрыва (R=10 км) и вибратора R=12 км)

17

ЭФФЕКТ ПРОСТРАНСТВЕННОЙ ФОКУСИРОВКИ АКУСТИЧЕСКИХ ВОЛН ОТ ΒИБРАТОРА И ПОЛИГОННОГО ВЗРЫВА С УЧЕТОМ ВЛИЯНИЯ ВЕТРА

Графики зависимости акустического давления от азимута в зависимости от ветра при регистрации колебаний от вибратора ЦВ-40. Красная линия-случай круговой расстановки датчиков с радиусом 6 км при скорости ветра 2-4 м/с; голубая линия- соответственно 12км и 4-

График голубого цветазависимость акустического давления от азимута для полигонного взрыва мощностью 125 кг, силе ветра 1 м/с. и расстановки датчиков по кругу с радиусом 10 км. График красного цветаослабление уровня акустического давления по атнашению к его уровню в контрольной точке

1400

1200

1000

600

400

200

Ослаблени 800

акуст. давления

10

НАБЛЮДЕНИЕ ФЕНОМЕНА ТЕМПЕРАТУРНОЙ ИНВЕРСИИ В ПРИЗЕМНОМ НИЗКОТЕМПЕРАТУРНОМ СЛОЕ ВОЗДУХА В УТРЕННИЕ ЧАСЫ ПРИ ЗОНДИРОВАНИИ АТМОСФЕРЫ ВИБРАТОРОМ ГРВ-50 НА УДАЛЕНИИ 20 КМ.

. Записи волн в ночные и утренние часы при зондировании в системе «земля-атмосфера» вибратором ГРВ-50 на удалении 20 км. Волны первых вступлений на временах около 4 с соответствуют сейсмическим, на 60 с-акустическим

ВЛИЯНИЕ ВЛАЖНОСТИ ВОЗДУХА НА РАСПРОСТРАНЕНИЕ ИНФРАЗВУКА ОТ ВИБРАТОРА ЦВ-40. РЕГИСТРАЦИЯ НА УДАЛЕНИИ ОТ ВИБРАТОРА НА 50 КМ:

трасса района проведения экспериментов протяженностью 50 км

КРИТИЧЕСКИЕ НОРМЫ ГЕОЭКОЛОГИЧЕСКИХ РИСКОВ ОТ ВЗРЫВОВ.

Геоэкологическое воздействие карьерных взрывов оценивается удельной плотностью энерги

 $E = \frac{1}{\rho c} \int_{0}^{T} p^{2}(t) dt \quad \rho c \text{ _удельное акустическое сопротивление воздуха, = 42 г/(см²·с);}$

p(t) – акустическое давление, регистрируемое на выходе акустического датчика; Т – длительность акустической волны. Допустимые табулированные значения удельной плотности энергии даются в единицах дж/м².

Охраняемый объект	Критическое значение удельной энергии ε _{кр} , Дж/м ²	
	разрушительной	безопасной
Сейсмическая волна		
Здание жилое, взрыв однократный	2600	1000
Здание производственное, взрыв однократный		1500
Воздушная волна		
Оконное стекло толщиной 2–3 см	80	15
Взрывной шум (раздражающее действие)		
Человек		3

Таблица 1 Допустимые акустические воздействия

СООТНОШЕНИЯ ИЗМЕРЕННОЙ УДЕЛЬНОЙ ПЛОТНОСТИ АКУСТИЧЕСКОЙ ЭНЕРГИИ ОТ ВЗРЫВА С ТРОТИЛОВЫМ ЭКВИВАЛЕНТОМ 125 КГ И КРИТИЧЕСКИЕ НОРМЫ ДЛЯ СТРОЕНИЙ И ЧЕЛОВЕКА

Критические значения удельной плотности энергии для строений:1жилое здание при однократном взрыве; 2- жилое здание при многкратных взрывах; 3- оконное стекло толщиной 2-3 мм; 4- для человека. Значения удельной плотности энергии от взрыва: 5- на удалении от взрыва 0.5 км; 6- на удалении 10 км.

Сопоставление акустических воздействий от взрыва и вибратора

- Оценка <u>максимума давления</u> по записи акустограммы на удалении 10 км от взрыва с тротиловым эквивалентом в 125 кг составила <u>р_{мах}=15.9 Па.</u>
- Для сравнения максимум акустического давления от вибратора ЦВ-40 на удалении 12 км составил <u>p=0.013 Па</u>, т.е. более чем в 1000 раз меньше, чем от взрыва. Это доказывает высокую экологическую безопасность вибраторов как инструментов для проведения экспериментальных исследований.

PROBLEM STATEMENT

Acoustic wave falls onto ground with vegetable layer at angle θ ($0 \le \theta \le 90^\circ$)

k – wave vector

PROBLEM STATEMENT

Waves generated by incident acoustic wave:

Refracted and reflected waves in the forest,

p

S

Longitudinal and transverse waves in the ground.

SIMULATION RESULTS

Graphs of the acoustic pressure dependence for refracted and reflected waves on the incidence angle θ at different heights H = 0, 5, 10, 50 m, frequency f = 10 Hz.

Graphs of the acoustic pressure dependence for refracted and reflected waves on the angle of incidence θ at different frequencies f=8, 15, 40

Angle of incidence in degrees θ , in degrees

ЗАКЛЮЧЕНИЕ

- Предложена и экспериментально реализована методика изучения влияния сейсмоакустических эффектов от техногенных взрывов — короткозамедленных карьерных, полигонных и др. — на окружающую природную среду и социальную инфраструктуру. Предложенный подход основан на использовании сейсмических и акустических колебаний сейсмических вибраторов, отвечающих требованиям геоэкологической безопасности и обладающих высокими метрологическими силовыми и частотно-временными характеристиками, что гарантирует высокую повторяемость результатов исследований. Это позволяет оценивать геоэкологические риски от взрывов в зависимости от гео- и метеоусловий и мощности взрывов.
- Проведены экспериментальные исследования, иллюстрирующие явление пространственной фокусировки сейсмоакустических колебаний от вибраторов и взрывов. В частности показано, что сектор концентрации основной энергии акустических волн от вибратора ЦВ-40 при скорости ветра 2-4 м/сек занимает около 60 град. При этом перепад по уровню максимальных и минимальных уровней акустических волн достигает до 50 раз..
- Дальнейшее направление исследований связано с изучением распространения и воздействия низкочастотных техногенных (транспортных) шумов с учетом влияния совокупности природных факторов
- Работа выполнена при поддержке грантов РФФИ №10-07-00387-а , №11-07-10000-к, 12-01-00773, 16-07-01052 а, 18-47-540006р_а

СПИСОК ПУБЛИКАЦИЙ

1. Оценка и пути снижения негативных последствий экстремальных природных явлений и техногенных катастроф. Монография под.ред. акад. Лаверова Н.П., М.: ИФЗ РАН, 2011.-220с.

2. Алексеев А.С., Глинский Б.М., Ковалевский В.В., Хайретдинов М.С. и др. Активная сейсмология с мощными вибрационными источниками / Отв. ред. Г.М. Цибульчик. Новосибирск: ИВМиМГ СО РАН, Филиал "Гео" Издательства СО РАН, 2004. 387с.

3. Алексеев А.С., Глинский Б.М., Ковалевский В.В., А.Г., Хайретдинов М.С. и др.. Эффект акустосейсмической индукции при вибросейсмическом зондировании. // Доклады АН. 1996. Т.346. № 5. С.664–667.

4. Новые геотехнологии и комплексные геофизические методы изучения внутренней структуры и динамики геосфер. Вибрационные геотехнологии. Под ред.акад. Н.П. Лаверова. М.: Региональная общественная организация ученых по проблемам прикладной геофизики . 470с.

5. Адушкин В.В., Спивак А.А., Соловьев С.П. Геоэкологические последствия массовых химических взрывов на карьерах. // Геоэкология. Инженерная Геология. Гидрогеология. Геокриология. 2000. №6. С.554–563.

6. *Бреховских Л.М.* Волны в слоистых средах. М.: Наука, 1973, 343 с.

7. *М.С. Хайретдинов, В.В. Ковалевский, Г.М. Воскобойникова, Г.Ф. Седухина.* Оценивание метеозависимых геоэкологических рисков от взрывов с помощью сейсмических вибраторов// Технологии сейсморазведки, № 3, 2016, с. 132–138.

8. Исакович М.А. Общая акустика. М.:Наука, ИФМЛ, 1973, 495 с.

9. Единые правила безопасности при взрывных работах. М.: НПО ОБТ, 1993. 238с.

Спасибо за внимание! Thank You for attention!