Красоткина О.В.

Понятие сигнала. Нестационарная модель сигнала

Примеры сигналов и их нестацио- нарных моделей

Поделен Речевой сигнал Инвестиционный портфель Белки

Деффектограммы

Введение. Прикладные задачи анализа сигналов

к.ф.-м.н., доцент Красоткина О.В.

Московский государственный университет факультет ВМК кафедра Математических методов прогнозирования

Цифровые методы обработки сигналов Лекция 1 Тула, 2014

План

Красоткина О.В.

Понятие сигнала. Нестацио нарная модель сигнала

Примеры сигналов и их нестационарных моделей

Речевой сигнал Инвестиционный портфель Белки

Деффектограммы

- 1 Понятие сигнала. Нестационарная модель сигнала
- 2 Примеры сигналов и их нестационарных моделей
 - Речевой сигнал
 - Инвестиционный портфель
 - Белки
 - Деффектограммы

Понятие сигнала

Красоткина О.В.

Понятие сигнала. Нестационарная модель сигнала

Примеры сигналов и их нестационарных моделей

Речевой сигнал Инвестиционный портфель Белки

Деффектограммы

Неформальное определение

В современном понимании под *сигналом* принято понимать массив экспериментальных данных, упорядоченных вдоль оси некоторого аргумента - времени, частоты, пространственной координаты

Понятие сигнала

Красоткина О.В.

Понятие сигнала. Нестационарная модель сигнала

Примеры сигналов и их нестацио- нарных

моделей Речевой сигнал Инвестиционный портфель Белки Деффектограммы

Формальное определение

Сигнал есть функция скалярного аргумента $y_t: T \to Y$: , принимающая значения в некотором множестве Y, вообще говоря, произвольной природы. Будем полагать, что аргумент $t \in T$ пробегает дискретное множество значений в пределах действительной оси $\mathbb{T} = \{t_1,...,t_N\} \subset \mathbb{R}$. Тогда множество этих значений естественно понимать как множество индексов элементов упорядоченного массива данных.

Задача анализа сигнала. Стационарные и нестационарные модели

Красоткина О.В.

Понятие сигнала. Нестацио- нарная модель сигнала

сигналов и их нестационарных моделей Речевой сигнал Инвестиционный портфель Белки

Деффектограммы

Задачу анализа предъявленного сигнала данных практически всегда можно понимать как задачу выбора его модели \hat{X} из некоторого класса моделей $X \in \mathbb{X}$. Естественно различать $\mathit{стационарныe}$ модели, передающие общую форму предъявленного сигнала в пределах всей области определения $\mathbb{T} = \{1,...,N\}$, и $\mathit{нестационарныe}$ модели, призванные отражать изменение некоторого локального свойства сигнала вдоль его дискретной оси.

Примеры моделей

Красоткина О.В.

Понятие сигнала. Нестационарная модель сигнала

Примеры сигналов и их нестационарных моделей Речевой

Речевой сигнал
Инвестиционный портфель
Белки
Деффектограммы

Стационарные

- постоянное среднее значение сигнала
- спектр сигнала в виде совокупности коэффициентов представления по заданному базису

Нестационарные

- изменяющееся локальное среднее
- последовательность его локальных спектров,
 полученные путем усреднения соответствующего
 свойства сигнала в некотором скользящем окне

Оценивание нестационарных моделей

Красоткина О.В.

Понятие сигнала. Нестационарная модель сигнала

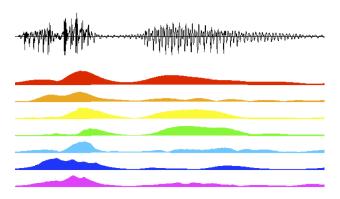
Примеры сигналов и их нестацио- нарных

моделеи Речевой сигнал Инвестиционный портфель Белки

Деффектограммы

Нестационарную модель сигнала следует искать в виде последовательности локальных моделей либо значений изменяющегося параметра некоторой общей локальной модели в каждой точке оси сигнала $X=(x_t,t=1,...,N)$. Множество $x_t \in \mathbb{X}$, из которого выбираются значения параметра модели сигнала, определяется спецификой каждой прикладной задачи.

Задача распознавания речевых команд: Исходные данные


Красоткина О.В.

Понятие сигнала. Нестацис нарная модель сигнала

Примеры сигналов и их нестацио нарных

Речевой сигнал

Инвестиционный портфель Белки Деффектограммы

Сигнал речи, зарегистрированный при произнесении слова 'один', и его представление в виде последовательности мгновенных интенсивностей спектральных составляющих в семи полосах частот, охватывающих диапазон от 10 до 3000 герц.

Речевой сигнал: Модель

Красоткина О.В.

Понятие сигнала. Нестацио нарная модель сигнала

Примеры сигналов и их нестацио нарных

Речевой сигнал

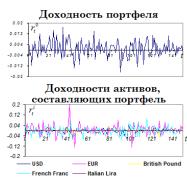
Инвестиционный портфель Белки

Деффектограм<mark>мы</mark>

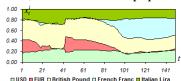
Нестационарной моделью речевого сигнала будет последовательность его локальных спектров $X=(\mathbf{x}_t,t=1,...,N)$, представляющих собой совокупность $\mathbf{x}_t=(x_t^{(1)},...,x_t^{(n)})\in R^n$ конечного числа спектральных составляющих для некоторого числа фиксированных частот $f^{(1)},...,f^{(n)}$.

Задача оценивания состава портфеля инвестиционной компании

Красоткина О.В.


Понятие сигнала. Нестацио нарная модель сигнала

Примеры сигналов и их нестационарных моделей


Речевой

Инвестиционны портфель Белки

Деффектограммы

Оцененный состав портфеля

Задача оценивания состава портфеля инвестиционной компании: Исходные данные

Красоткина О.В.

Понятие сигнала. Нестацио нарная модель сигнала

Примеры сигналов и их нестацио нарных моделей Речевой сигнал

Речевой сигнал

Инвестиционный портфель
Белки
Деффектограммы

Доходность портфеля

Пусть z_t - стоимость портфеля в момент время t, которая обычно не известна. Ежедневно инвестиционная компания обязана публиковать свою так называемую доходность $r_t^{(p)} = \left(z_t^{(p)} - z_{t-1}^{(p)}\right) \Big/ z_{t-1}^{(p)}$

Доходность ценных бумаг

Цены активов $(z_t^{(i)},\ i=1,...,n)$, в которые компания предположительно могла вложить свой капитал, обычно известны в любой момент времени, поэтому можно легко вычислить ежедневную доходность актива $r_t^{(i)}=(z_t-z_{t-1})/z_{t-1}$

Задача оценивания состава портфеля инвестиционной компании: Модель

Красоткина О.В.

Понятие сигнала. Нестацио нарная модель сигнала

Примеры сигналов и их нестацио нарных моделей сигнал

Речевой сигнал
Инвестиционный портфель
Белки
Деффектограммы

Процентный состав инвестиционного портфеля

$$\mathbf{x}_t = (x_t^{(1)} \cdots x_t^{(n)})^T, \, x_t^i \geqslant 0, \, i=1,...,n, \, \sum\limits_{i=1}^n x_t^i = 1$$
 - долевое распределение портфеля по видам инвестиций. Можно показать, что если средства не поступали в портфель и не извлекались из него, то $r_t^{(p)} \cong \sum\limits_{i=1}^n x_t^{(i)} r_t^{(i)}$.

Совокупность значений доходностей портфеля и потенциальных активов, из которых он может быть составлен , образует анализируемый векторный сигнал $\mathbf{y}_t = (r_t^{(p)}, r_t^{(i)}, \ i=1,...,n), \text{ а искомое долевое}$ распределение капитала $\mathbf{x}_t = (x_t^{(i)}, \ i=1,...,n) \in \mathbb{R}^n$ представляет собой нестационарную модель этого сигнала, подлежащую оцениванию

Задача парного выравнивания белков

Красоткина О.В.

Понятие сигнала. Нестацис нарная модель сигнала

Примеры сигналов и их нестацио нарных

Речевой сигнал Инвестиционный портфель

Белки

Деффектограм<mark>мы</mark>

Cytochrome C

1TIM:A 247 amino acids

APKRI YYGENMKNNERKRSIGELIHTUDGALISAUTEVVUGARSITIDVA ROKLDAKIOVAANONYKVYRGAGTEGISPAMIKDIGAAWYLIGHESERRU PGESDELIGOKVAHALABGLGVIACIGEKLDEREAGITEKVVFOETKAIJ BUNYKDWSKVVLAYEPVHAIGTGKTATPQQAQEVHEKLRGWLKTHVSDAVA VQSRIIYGGSVTGGMCKELASQHDVDGFLVGGASLKPEFVDIINAKH

Immunoglobin beta-sandwich

2MHR:_ 118 amino acids

GMELPEPTYWDESPROFTEGLDEEHRKIFRGIFDCIRDNSAFNLATLYRV TTNHFTHEBAMMDAAKYSEVVPHKKMHKDFLEKIGGLSAPVDAKNVDYCK EMLVNHIKGTDFKYKGKL

Four-helical bundle

3ADK: 195 amino acids

XMEEKLKKSKIIFVVGGPGSGKGTQCBKIVQKYGYTHLSTGDLLRAEVSS GSAGKMLSEIMEKGGLUPLETYLGMR.DAKVAKVDTSKGFLIDGYPEXV KGGEEFERIGGPTLLLVYDAGFETMYKELLKRGETSGRVDDHEETIKKR LETYYKATEPVIAFYEKRGIVRKVNAEGSVDDVFSQVCTHLDTLK

Задача парного выравнивания белков: Исходные данные

Табл. 1. Двадцать аминокислот и их буквенные обозначения.

Красоткина О.В.

Понятие сигнала. Нестацио нарная модель сигнала

Примеры сигналов и их нестационарных

Речевой сигнал Инвестиционный портфель Белки

DOTKI							
			грам	4M			

Alanine (аланин)	Ala	Α	Methionine (метионин)	Met	M
Cysteine (цистеин)	Cus	С	Asparagine (аспарагин)	Asn	N
Aspartic Acid (аспарагиновая кислота)	Asp	D	Proline (пролиц)	Pro	P
Glutamic Acid (глутаминовая кислота)	Glu	Е	Glutamine (глутамин)	Gln	Q
Phenylalanine (фенилаланин)	Phe	F	Arginine (аргинин)	Arg	R
Glycine (глицин)	Gly	G	Serine (серин)	Ser	S
Histidine (гистидин)	His	Н	Threonine (треонин)	Thr	Т
Isoleucine(изолейцин)	Ile	I	Valine (валин)	Val	V
Lysine (лизин)	Lys	K	Tryptophan (триптофан)	Trp	W
Leucine (лейцин)	Leu	L	Tyrosine (тирозин)	Tyr	Y

Задача парного выравнивания белков: Модель

Красоткина О.В.

Понятие сигнала. Нестацио нарная модель сигнала

Примеры
сигналов и
их нестационарных
моделей
Речевой
сигнал
Инвестиционный
портфель
Белки
Деффектограммы

Существуют априорные объективные данные о попарном несходстве в химико-биологическом смысле всех аминокислот, что позволяет рассматривать алфавит аминокислот как метрическое пространство с некоторой заданной метрикой ho(y',y''). Так как длины аминокислотных последовательностей разных белков не совпадают, и для измерения их несходства длины белков выравнивают, искусственно вставляя пробелы между аминокислотами. Всякий вариант расстановки пробелов называют выравниванием двух символьных последовательностей X(Y',Y'').

Задача парного выравнивания белков: Модель

Красоткина О.В.

Понятие сигнала. Нестацио нарная модель сигнала

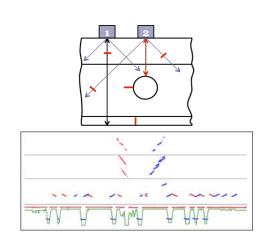
Примеры сигналов и их нестационарных моделей

Речевой сигнал Инвестиционный портфель Белки Деффектограммы

Последовательность $X=(\mathbf{x}_t,\ t=1,...N)$, наиболее согласующаяся как с обеими аминокислотными последовательностями, так и с представлениями о допустимых расстановках пробелов, играет роль искомой модели пары белков, определяющей степень их несходства

Красоткина О.В.

Понятие сигнала. Нестационарная модель

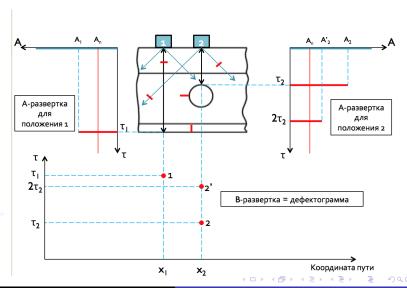

Примеры сигналов и их нестацио нарных моделей

моделеі Речевой сигнал

Инвестиционный портфель

Белки

Деффектограм<mark>мы</mark>


Красоткина О.В.

Понятие сигнала. Нестацио нарная модель сигнала

Примеры сигналов и их нестационарных

Речевой сигнал Инвестиционный портфель

Деффектограм

Красоткина О.В.

Понятие сигнала. Нестацио нарная модель сигнала

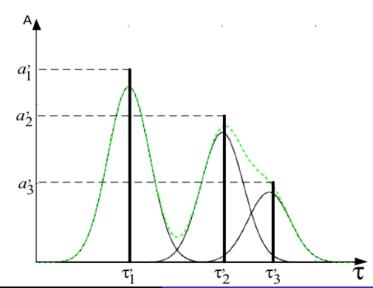
Примеры сигналов и их нестацио- нарных

Речевой сигнал Инвестиционный портфель Белки

деффектограм

Каждый элемент дефектограммы \mathbf{y}_t по отдельному каналу представляет собой импульсный сигнал в пространстве "задержка"-"амплитуда" . Таким образом, он оказывается представлен двухкомпонентным сигналом длины n=256, составленным из пар $(\tau_i,a_i)\in R^2$: $\mathbf{y}_t=(\tau_i,a_i,i=1,...n)$. Напрямую сравнивать сигналы такого вида невозможно, поэтому каждый элемент дефектограммы представляется смесью нормальных распределений

$$f(\tau|\mathbf{y}) = \sum_{i=1}^{n} a_i \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2}(\tau - \tau_i)^2\right)$$

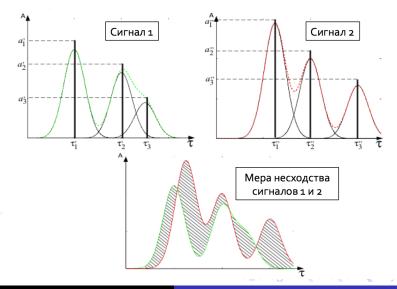

Красоткина О.В.

Понятие сигнала. Нестацио нарная модель сигнала

Примеры сигналов и их нестационарных моделей

Речевои сигнал Инвестиционный портфель

Деффектограмиы


Красоткина О.В.

Понятие сигнала. Нестацио нарная модель сигнала

Примеры сигналов и их нестацио- нарных

Речевой сигнал Инвестиционный портфель

Деффектограммы

Задача анализа ультразвуковых дефектограмм: Модель

Красоткина О.В.

Понятие сигнала. Нестацио[,] нарная модель сигнала

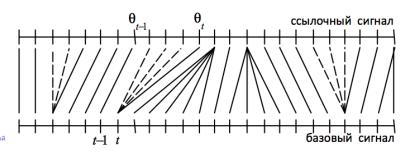
Примеры сигналов и их нестационарных

Речевой сигнал Инвестиционный портфель Белки

Деффектограмиы

Пусть мы имеем две дефектограммы $\mathbf{Y}'=(\mathbf{y}'_1,...,\mathbf{y}'_{N'})$ и $\mathbf{Y}''=(\mathbf{y}''_1,...,\mathbf{y}''_{N''})$, требующие сравнения. Один из них, неважно какой, примем за "базовый" , другой - за "ссылочный" . Под моделью сигнала будем понимать таблицу ссылок $X=(\theta_t,t=1,...,N')$, где $\theta_t\in\{1,...N''\}$ - абсолютная ссылка (номер отсчета в ссылочном сигнале, соответствующий отсчету t в базовом)

Задача анализа ультразвуковых дефектограмм: Модель


Красоткина О.В.

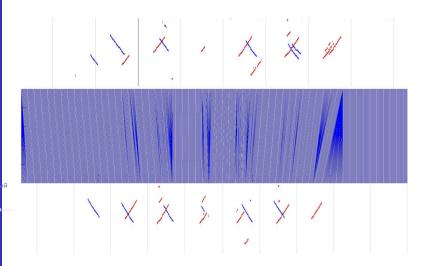
Понятие сигнала. Нестацио нарная модель сигнала

Примеры сигналов и их нестационарных

Речевой сигнал Инвестиционный портфель

Деффектограмиы

Задача выравнивания ультразвуковых дефектограмм: Пример выравнивани по красному каналу


Красоткина О.В.

Понятие сигнала. Нестацио нарная модель сигнала

Примеры сигналов и их нестацио- нарных молелей

Речевой сигнал Инвестиционный портфель

Деффектограммы

