
Real-‐Time	 Face	 Iden/fica/on	
via	 CNN	

and	 Boosted	 Hashing	 Forest	
Vladimir	 Gorbatsevich,	 Yury	 Vizilter,	 Andrey	 Vorotnikov	 and	 Nikita	 Kostromov	
State	 Research	 Ins/tute	 of	 Avia/on	 Systems	 (GosNIIAS),	 Moscow,	 Russia	
viz@gosniias.ru,	 gvs@gosniias.ru,	 vorotnikov@gosniias.ru,	 nikita-‐kostromov@yandex.ru	

	
	

IDP-‐2016	

MOTIVATION:	 real-‐/me	 face	 iden/fica/on	
•	 	 Real-‐:me	 means	 smallest	 templates	 and	 fastest	 search	 ⇒	
	 	 	 	 binary	 templates	 with	 Hamming	 distance;	
•	 	 State-‐of-‐the-‐art	 recogni/on	 rates	 ⇒	
	 	 	 	 convolu:onal	 neural	 networks	 (CNN)	 with	 non-‐binary	 output	
	 	 	 	 features	 compared	 by	 beGer	 metrics	 (L2,	 cosine,	 etc.).	
Various	 applica/ons	 ⇒	 different	 requirements	 to:	
•	 template	 size,	 •	 template	 genera:on	 speed,	
•	 template	 matching	 speed,	 •	 	 recogni:on	 rate.	
Our	 purpose:	 construct	 the	 family	 of	 face	 representa/ons,	 which	
con/nuously	 varies	 from	 “compact	 &	 fast”	 to	 “large	 &	 powerful”…	

…with	 the	 same	 engine.	
	
Is	 it	 possible?	

MAIN	 IDEA:	 Convolu/onal	 Network	 with	 Hashing	 Forrest	 (CNHF)	

CNHF	 =	 CNN	 +	 Hashing	 Transform	 based	 on	 Hashing	 Forest	 (HF)	
	

	
	
	
	
	
	
	
	

	
	
	
(Depth	 of	 trees	 ×	 Coded	 metrics	 ×	 Coding	 objective)	 =	 Family	 of	 face	
representations	 based	 on	 the	 same	 CNN.	
	
*In	 case	 of	 1-‐bit	 coding	 “trees”	 and	 Hamming	 distance	 CNHF	 provides	 the	
Hamming	 embedding.	

CNN	 Top	 Hidden	 Layer	

Objec:ve	 Feature	
Space	 with	 given	
Objec:ve	 metrics	 	

	
Coding	 Transform	

	

RELATED	 WORK	

Related	 work	 topics:	
•  CNN	 for	 face	 recogni:on	
•  learning	 approach	
•  face	 representa:on	
•  matching	 metrics	

•  Binary	 Hashing	 and	 Hamming	 Embedding	
•  Convolu:onal	 Networks	 +	 Binary	 Hashing	
•  Forest	 Hashing	 and	 Boosted	 Forest	
	
	
	
	
	

RELATED	 WORK:	 CNN	 for	 face	 recogni/on	

CNN learning approaches:
• learn CNN for multi-class face identification with classes corresponding to persons

Y. Taigman at al., “DeepFace: closing the gap to human-level performance in face verification,” 2014.
E. Zhou at al., “Naive-deep face recognition: Touching the limit of LFW benchmark or not?” 2015.

• learn the similarity metrics by training two identical CNNs (Siamese Architecture)
H. Fan at al., “Learning deep face representation,” 2014.
W. Wang at al., “Face recognition based on deep learning,” 2015.

• combine these approaches
Y. Sun at al., “Deep learning face representation by joint identification-verification,” 2014.
Y. Sun at al., “DeepID3: Face recognition with very deep neural networks,” 2015.

Face representation:
• output of the (top) hidden layer:

RELATED	 WORK:	 CNN	 for	 face	 recogni/on	
Matching metrics:
• L1-distance/Hamming distance

• L2-distance
D. Chen at al., “Blessing of dimensionality: High-dimensional feature and its efficient compression for
face verification,” 2013.
W. Wang at al., “Face recognition based on deep learning,” 2015.

• cosine similarity
Y. Sun at al., “Deep learning face representation by joint identification-verification,” 2014.
Y. Taigman at al., “DeepFace: closing the gap to human-level performance in face verification,” 2014.
X. Wu, “Learning robust deep face representation,” 2015.

• other

?	 =	

H. Fan, M. Yang, Z. Cao, Y. Jiang and Q. Yin, “Learning Compact Face Representation:
Packing a Face into an int32,” Proc. ACM Int. Conf. Multimedia, pp. 933-936, 2014.

Our approach:
•  any given metrics (including Hamming distance and special metrics for forest

of binary trees matching)

RELATED	 WORK:	 CNN	 for	 face	 recogni/on	
CNN architectures:
• multi-patch deep nets for different parts of face (state-of-the-art rates!)

J. Liu	 at al., “Targeting ultimate accuracy: face recognition via deep embedding,” 2015.
Y. Sun at al., “Deep learning face representation by joint identification-verification,” 2014.
Y. Sun at al., “DeepID3: Face recognition with very deep neural networks,” 2015.

• single nets (can be efficient enough with essentially lower computational cost)
Z. Cao at al., “Face Recognition with Learning-based Descriptor” 2010.
Omkar M. Parkhi at al., “Deep Face Recognition”, 2015
• Max-Feature-Map (MFM) architecture

X. Wu, “Learning robust deep face representation,” 2015.

Our architecture: (based on the MFM architecture)
• learning the basic single CNN with Max-Feature-Map (MFM) architecture
• transforming the layers of learned CNN to the multiple convolution architecture

for real-time implementation

RELATED	 WORK:	 Binary	 Hashing	 and	 Hamming	 Embedding	
Binary hashing techniques:

A. Gionis at al., “Similarity search in high dimensions via
hashing,” 1999.
Y. Gong at al., “Iterative quantization: A procrustean
approach to learning binary codes for large-scale image
retrieval,” 2012.
K. He at al., “K-means Hashing: An affinity-preserving
quantization method for learning binary compact codes,” 2013.
W. Liu at al., “Supervised hashing with kernels,” 2012.

Manifold hashing techniques:
• Spectral Hashing

Y. Weiss at al., “Spectral Hashing,” 2008.
• Topology Preserving Hashing (TPH)

L. Zhang at al., “Topology preserving hashing
for similarity search,” 2013.

• Locally Linear Hashing (LLH)
G. Irie at al., “Locally linear hashing for
extracting non-linear manifolds,” 2014.

ITQ	

TPH	

LLH	 *Figures	 are	 taken	
	 from	 cited	 papers!	

RELATED	 WORK:	 Binary	 Hashing	 and	 Hamming	 Embedding	

Closest approaches:

• Restricted Boltzmann

Machines (RBM)
R. Salakhutdinov and G. Hinton,
“Semantic hashing,” 2009.

• Boosted Similarity Sensitive
Coding (Boosted SSC)
G. Shakhnarovich, “Learning task-specific
similarity,” 2005.
G. Shakhnarovich at al., “Fast pose estimation
with parameter sensitive hashing,” 2003.

Our approach:

• Boosted Hashing Forest (generalization of Boosted SSC):

• boosting the hashing forest in the manner of Boosted SSC;
• induction of any given metrics in the coded feature space;
• optimizing any given task-specific objective function.

RBM	

RELATED	 WORK:	 Binary	 Hashing	 via	 Convolu/onal	 Networks	
Closest approach:
• binary face coding via CNN with hashing layer (CNHL)
• learning CNN and hashing layer together via back propagation technique

H. Fan, M. Yang, Z. Cao, Y. Jiang and Q. Yin, “Learning Compact Face
Representation: Packing a Face into an int32,” Proc. ACM Int. Conf. Multimedia,
pp. 933-936, 2014.

Great result: 32-bit binary face representation provides 91% verification on LFW!

Problems:
• results for larger templates are too far from state-of-the-art;
• direct optimization of more complex face coding criterions is not available;
• we cannot perform the learning if CNHF via back propagation.

Our approach:
• binary face coding via CNN with hashing transform
• go back to the two-step learning procedure:

• learn basic CNN first,
• learn hashing transform second.

RELATED	 WORK:	 Forest	 Hashing	 and	 Boosted	 Forest	
Previous Forest Hashing techniques (non-boosted):
• random forest semantic hashing scheme with information-

theoretic code aggregation
Q. Qiu at al., “Random Forests Can Hash,” 2014.

• feature induction based on random forest for learning
regression and multi-label classification
C. Vens and F. Costa, “Random Forest Based Feature Induction”,

 2011.
• forest hashing with special order-sensitive Hamming distance

G. Yu and J. Yuan, “Scalable forest hashing for fast similarity search”,
 2014.
• combination of kd-trees with hashing technique

J. Springer at al., “Forest hashing: Expediting large scale image
retrieval,” 2013.

Previous Boosted Forest approach:
• Boosted Random Forest (out of the binary hashing topic)

Y. Mishina at al., “Boosted Random Forest,” 2015.

Our approach:
• Boosted Hashing Forest (generalization of Boosted SSC):

• metric feature space induction via forest hashing;
• hashing forest boosting in the manner of Boosted SSC;
• optimizing the biometric-specific objective function.

SUMMARY	 OF	 INTRODUCTION	
Contributions of this paper:

(1) The family of real-time face representations based on multiple
convolution CNN with hashing forest (CNHF);

(2) New biometric-specific objective function for joint optimization of
face verification and identification;

(3) Boosted Hashing Forest (BHF) technique for optimized feature
induction with generic form of coding objective, coded feature space and
hashing function.

Content of presentation reminder:
• Architecture and learning of CNHF with

multiple convolution layers;
• Boosted Hashing Forest technique and

its implementation for face coding;
• Experimental results on LFW
• Conclusion and discussion

CNHF:	 basic	 single	 net	 with	 MFM	 architecture	
Original Max-Feature-Map (MFM) architecture:
• Max-Feature-Map instead of ReLU activation function
• 4 convolutional layers
• 4 layers of pooling + MFM pooling
• 1 fully connected layer
• 1 sofmax layer

X. Wu, “Learning robust deep face representation,” 2015.

CNHF:	 basic	 CNN	 +	 Hashing	 Forest	 (HF)	

1 coding tree ↔ 1 coded feature
Hashing forest ↔ Objective feature space with Objective metrics
(Depth of trees × Objective metrics × Objective function) =
= Family of face representations*
*1-bit coding “trees” + Hamming distance = CNHL for Hamming embedding

CNHF:	 forming	 and	 learning	
Two-step CNHF learning scheme:
• learn basic CNN for multi-class face identification;
• learn hashing transform for joint face verification and identification.

CNHF forming and learning (more details about CNN
implementation):
1. learn the source CNN for multi-class face identification with classes

corresponding to persons via back-propagation;
2. transform CNN to the multiple convolution architecture via

substitution of each convolutional layer by the superposition of
some (2-4) simpler convolutional layers (decreasing the number of
multiplication operations);

3. train again the transformed CNN for multi-class face identification
via back-propagation;

4. replace the output soft-max layer of transformed CNN by
hashing forest and train the hashing forest.

Steps	 2&3:	 Mul/ple	 convolu/on	 CNN	 transforma/on	
Idea:	 Replace	 big	 convolu:onal	 filters	 by	 sequences	 of	 small	 filters	 and	 1x1xN	 filters	

128	

5	

5	 3	

3	

64	

3	

3	

64	

1	

1	

128	

Input	 and	 output	 dimensions	 are	 equal	
	
Transformed	 layer	 relearning	 by	 back	 propaga/on:	

Reference	 layer	

Mul:conv	 layer	

Input	

Reference	 signal	

Euclidean	 loss	
Error	

Fast	 relearning	 (small	 layer	 sizes)!	
No	 need	 to	 relearn	 all	 network!	
	

Finally:	 fine	 tune	 the	 whole	 network	 aaer	 replacing	 all	 convolu:onal	 layers	

CNHF:	 mul/ple	 convolu/on	 architecture	 and	 performance	
Our CNHF architecture:
• Max-Feature-Map instead of ReLU activation function
• 10 convolutional layers
• 4 layers of pooling + MFM pooling
• 1 fully connected layer
• hashing forest

CNHF performance:
• 40+ fps with CPU Core i7 (real-time without GPU)
• 120+ fps with GPU GeForce GTX 650

5	 :mes	 faster!	

FACE	 CODING:	 Boosted	 Hashing	 Forest	 (BHF)	

Boosted Hashing Forest (BHF):
• algorithmic structure of Boosted SSC;
• binary code structure of Forest Hashing;
• support of any objective metrics and objective functions

Original Boosted SSC
• optimizes the performance of L1 distance in the

embedding space
• as a proxy for the pairwise similarity function,
• which is conveyed by a set of examples of positive

(similar) and negative (dissimilar) pairs.

FACE	 CODING:	 Boosted	 Hashing	 Forest	 (BHF)	
Main parts of original Boosted SSC:
• SSC algorithm takes pairs labeled by similarity and produces a binary

embedding space.
o The embedding is learned by independent collecting thresholded

projections of the input data.
o The threshold is selected by optimal splitting the projections of

negative pairs and non-splitting the projections of positive pairs.
• Boosted SSC algorithm collects the embedding dimensions greedily

with adaptive weighting of samples and features like in AdaBoost.
• BoostPro algorithm uses a soft thresholding for gradient-based

learning of projections.

*Figure	 from	
G.	 Shakhnarovich,	 “Learning	 task-‐specific	 similarity,”	 2005.	

FACE	 CODING:	 Boosted	 Hashing	 Forest	 (BHF)	
Proposed BHF w.r.t. original Boosted SSC:

 Original Boosted SSC Proposed BHF
output features binary features binary coded non-binary features
data coding structure binary hashing vector hashing forest of binary trees
objective function pairwise similarity function any given objective function
boosting algorithm iterative binary vector growing by

adding thresholded projections
iterative hashing forest growing
with recursive growing of each tree
by adding thresholded projections

learning data
projections

gradient-based optimization objective-driven RANSAC search

adaptive reweighting
of training pairs

AdaBoost-style reweighting directly based on the contribution of
this pair to the objective function

output metric space
(matching metrics)

weighted Hamming space any given metric space (including
Hamming space, if required)

Our BHF implementation for face coding:
• new biometric-specific objective function with joint optimization of face

verification and identification;
• selection and processing of subvectors of the input feature vector;
• creation of ensemble of output hash codes for overcoming the limitations of

greedy learning.

BHF	 details:	 Objec/ve-‐driven	 Recurrent	 Coding	
Training set: X= {xi∈Rm}i=1,…,N (N objects described by m-
dimensional feature space).
Mapping X to the n-dimensional binary space (n-bit coder):

h(n)(x): x∈Rm → b∈{0,1}n

Elementary coder (1-bit hashing function):

h(x): x∈Rm → b∈{0,1},h(n)(x) = (h(1)(x),…,h(n)(x)).

Objective function to be minimized via learning:

J(X,h(n)) → min(h(n)).

Formal	 statement	

BHF	 details:	 Objec/ve-‐driven	 Recurrent	 Coding	
Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm
sequentially forms the bits of coder in a recurrent manner (Algorithm 1)

Algorithm 1: Greedy ORC
Input data: X, J, nORC.
Output data:
 h(x): x∈Rm → y∈{0,1}nORC, h(x)∈H.
Initialization:

Step 0. k:=0; h(k) := ().
Repeat iterations:

k:= k+1;
Learn k-th elementary coder:

h(k)(x, h(k-1)):= Learn1BitHash(J, X, h(k-1));
Add k-th elementary coder to the
hashing function:

h(k)(x) := (h(k-1)(x), h(k)(x, h(k-1)));
// concatenation

while k<nORC. // stop if the given size is got

=	

1	

BHF	 details:	 Objec/ve-‐driven	 Recurrent	 Coding	
Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm
sequentially forms the bits of coder in a recurrent manner (Algorithm 1)

Algorithm 1: Greedy ORC
Input data: X, J, nORC.
Output data:
 h(x): x∈Rm → y∈{0,1}nORC, h(x)∈H.
Initialization:

Step 0. k:=0; h(k) := ().
Repeat iterations:

k:= k+1;
Learn k-th elementary coder:

h(k)(x, h(k-1)):= Learn1BitHash(J, X, h(k-1));
Add k-th elementary coder to the
hashing function:

h(k)(x) := (h(k-1)(x), h(k)(x, h(k-1)));
// concatenation

while k<nORC. // stop if the given size is got

=	

+	

10	

BHF	 details:	 Objec/ve-‐driven	 Recurrent	 Coding	
Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm
sequentially forms the bits of coder in a recurrent manner (Algorithm 1)

Algorithm 1: Greedy ORC
Input data: X, J, nORC.
Output data:
 h(x): x∈Rm → y∈{0,1}nORC, h(x)∈H.
Initialization:

Step 0. k:=0; h(k) := ().
Repeat iterations:

k:= k+1;
Learn k-th elementary coder:

h(k)(x, h(k-1)):= Learn1BitHash(J, X, h(k-1));
Add k-th elementary coder to the
hashing function:

h(k)(x) := (h(k-1)(x), h(k)(x, h(k-1)));
// concatenation

while k<nORC. // stop if the given size is got

=	

+	

+	

101	

BHF	 details:	 Objec/ve-‐driven	 Recurrent	 Coding	
Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm
sequentially forms the bits of coder in a recurrent manner (Algorithm 1)

Algorithm 1: Greedy ORC
Input data: X, J, nORC.
Output data:
 h(x): x∈Rm → y∈{0,1}nORC, h(x)∈H.
Initialization:

Step 0. k:=0; h(k) := ().
Repeat iterations:

k:= k+1;
Learn k-th elementary coder:

h(k)(x, h(k-1)):= Learn1BitHash(J, X, h(k-1));
Add k-th elementary coder to the
hashing function:

h(k)(x) := (h(k-1)(x), h(k)(x, h(k-1)));
// concatenation

while k<nORC. // stop if the given size is got

=	

+	

+	

+	 1011…	

BHF	 details:	 Learning	 elementary	 linear	 classifier	
	 via	 RANSAC	 algorithm	

At the k-th step of coder growing we select the k-th elementary coder

J(X,h(k)) = J(X,h(k-1),h(k)) → min{h(k) ∈ H},

Let H is a class of binary linear classifiers of the form

h(w, t, x) = sgn(∑k=1,…,m wk xk + t),
where w – vector of weights, t – threshold of hashing function,
sgn(u) = {1, if u > 0; 0 - otherwise}.

In this case objective function depends on w and t only:

J(X,h(k-1),h(k)) = J(X, h(k-1), w, t) → min{w∈Rm, t∈R}.

We use RANSAC for finding the projection w and threshold t, which
approximately minimizes the objective function.

Formal	 statement	

BHF	 details:	 Learning	 elementary	 linear	 classifier	
	 via	 RANSAC	 algorithm	

Projection determination:
• Iterative random selection of dissimilar pairs in a training set as vectors

of hyperplane direction and searching for corresponding optimal threshold;
• taking the projection and threshold, which provide the best value of objective

function.

Algorithm 2: RANSAC Learn1ProjectionHash
Input data: J, X, h(k-1), kRANSAC.
Output data: h(w, t, x).
Initialization:

Step 0. k:=0; Jmax:=-∞.
Repeat iterations:

k:= k+1;
Step 1. Take the random dissimilar pair (xi ,xj) in X.
Step 2. Get vector (xi,xj) as a vector of hyperplane direction: wk:=xj – xi.
Step 3. Calculate the threshold tk minimizing J (6) by t with w=wk:
tk:=argmint J(X, h(k-1), wk, t).
Step 4. If J(X, h(k-1), wk, tk) > Jmax, then
 Jmax:= J(X, h(k-1), wk, tk); w:= wk; t:= tk.

while k<kRANSAC. // stop if the given number of RANSAC iterations is achieved

BHF	 details:	 Learning	 elementary	 linear	 classifier	
	 via	 RANSAC	 algorithm	

Projection determination:
• Iterative random selection of dissimilar pairs in a training set as vectors

of hyperplane direction and searching for corresponding optimal threshold;
• taking the projection and threshold, which provide the best value of objective

function.

Algorithm 2: RANSAC Learn1ProjectionHash
Input data: J, X, h(k-1), kRANSAC.
Output data: h(w, t, x).
Initialization:

Step 0. k:=0; Jmax:=-∞.
Repeat iterations:

k:= k+1;
Step 1. Take the random dissimilar pair (xi ,xj) in X.
Step 2. Get vector (xi,xj) as a vector of hyperplane direction: wk:=xj – xi.
Step 3. Calculate the threshold tk minimizing J (6) by t with w=wk:
tk:=argmint J(X, h(k-1), wk, t).
Step 4. If J(X, h(k-1), wk, tk) > Jmax, then
 Jmax:= J(X, h(k-1), wk, tk); w:= wk; t:= tk.

while k<kRANSAC. // stop if the given number of RANSAC iterations is achieved

BHF	 details:	 Learning	 elementary	 linear	 classifier	
	 via	 RANSAC	 algorithm	

Projection determination:
• Iterative random selection of dissimilar pairs in a training set as vectors

of hyperplane direction and searching for corresponding optimal threshold;
• taking the projection and threshold, which provide the best value of objective

function.

Algorithm 2: RANSAC Learn1ProjectionHash
Input data: J, X, h(k-1), kRANSAC.
Output data: h(w, t, x).
Initialization:

Step 0. k:=0; Jmax:=-∞.
Repeat iterations:

k:= k+1;
Step 1. Take the random dissimilar pair (xi ,xj) in X.
Step 2. Get vector (xi,xj) as a vector of hyperplane direction: wk:=xj – xi.
Step 3. Calculate the threshold tk minimizing J (6) by t with w=wk:
tk:=argmint J(X, h(k-1), wk, t).
Step 4. If J(X, h(k-1), wk, tk) > Jmax, then
 Jmax:= J(X, h(k-1), wk, tk); w:= wk; t:= tk.

while k<kRANSAC. // stop if the given number of RANSAC iterations is achieved

BHF	 details:	 Learning	 elementary	 linear	 classifier	
	 via	 RANSAC	 algorithm	

Projection determination:
• random selection of dissimilar pairs in a training set as a vector of hyperplane

direction.

Threshold determination:
• The idea of Boosted SSC “ThresholdRate” algorithm is implemented for direct

optimization of the global objective function:

*Figure	 from	 G.	 Shakhnarovich,	 “Learning	 task-‐specific	 similarity,”	 2005.	

•  Sort	 projec/ons	 of	 objects	 of	 training	 set	 onto	 the	 current	 projec/on	 direc/on	 w
•  For	 each	 t	 accumulate	 penal/es	 for	 separated	 similar	 and	 non-‐separated	 dissimilar	 pairs	 	

BHF	 details:	 Recursive	 coding	 and	 Trees	 of	 coders	
Consider the tessellation of X by n-bit coder:

XB = {Xb, b∈{0,1}n}, Xb = {x∈X: h(x)=b}, X = ∪b∈{0,1}n X b.

Recursive coding is a dichotomy of training set with finding the optimized
elementary coder for each subset at each level of tessellation:

 1 bit 2 bits 3 bits 4 bits…

Elementary recursive coder for k-th bit:

h(k)(x, h(k-1)) = h(w(h(k-1)(x)), t(h(k-1)(x)), x),
h(k)(x, h(k-1)) = Learn1BitHash(J, X, h(k-1)) =

= {Learn1ProjectionHash(J, X(h(k-1),b), h(k-1)), b∈{0,1}(k-1)}.
//set of 2(k-1) thresholded projections formed by RANSAC

Tree of binary coders: recursive n-bit coder h(n)(x).

BHF	 details:	 Recursive	 coding	 and	 Trees	 of	 coders	
Consider the tessellation of X by n-bit coder:

XB = {Xb, b∈{0,1}n}, Xb = {x∈X: h(x)=b}, X = ∪b∈{0,1}n X b.

Recursive coding is a dichotomy of training set with finding the optimized
elementary coder for each subset at each level of tessellation:

 1 bit 2 bits 3 bits 4 bits…

Elementary recursive coder for k-th bit:

h(k)(x, h(k-1)) = h(w(h(k-1)(x)), t(h(k-1)(x)), x),
h(k)(x, h(k-1)) = Learn1BitHash(J, X, h(k-1)) =

= {Learn1ProjectionHash(J, X(h(k-1),b), h(k-1)), b∈{0,1}(k-1)}.
//set of 2(k-1) thresholded projections formed by RANSAC

Tree of binary coders: recursive n-bit coder h(n)(x).

BHF	 details:	 Recursive	 coding	 and	 Trees	 of	 coders	
Consider the tessellation of X by n-bit coder:

XB = {Xb, b∈{0,1}n}, Xb = {x∈X: h(x)=b}, X = ∪b∈{0,1}n X b.

Recursive coding is a dichotomy of training set with finding the optimized
elementary coder for each subset at each level of tessellation:

 1 bit 2 bits 3 bits 4 bits…

Elementary recursive coder for k-th bit:

h(k)(x, h(k-1)) = h(w(h(k-1)(x)), t(h(k-1)(x)), x),
h(k)(x, h(k-1)) = Learn1BitHash(J, X, h(k-1)) =

= {Learn1ProjectionHash(J, X(h(k-1),b), h(k-1)), b∈{0,1}(k-1)}.
//set of 2(k-1) thresholded projections formed by RANSAC

Tree of binary coders: recursive n-bit coder h(n)(x).

BHF	 details:	 Recursive	 coding	 and	 Trees	 of	 coders	
Consider the tessellation of X by n-bit coder:

XB = {Xb, b∈{0,1}n}, Xb = {x∈X: h(x)=b}, X = ∪b∈{0,1}n X b.

Recursive coding is a dichotomic splitting of training set with finding the optimized
elementary coder for each subset at each level of tessellation:

 1 bit 2 bits 3 bits 4 bits…

Elementary recursive coder for k-th bit:

h(k)(x, h(k-1)) = h(w(h(k-1)(x)), t(h(k-1)(x)), x),
h(k)(x, h(k-1)) = Learn1BitHash(J, X, h(k-1)) =

= {Learn1ProjectionHash(J, X(h(k-1),b), h(k-1)), b∈{0,1}(k-1)}.
//set of 2(k-1) thresholded projections formed by RANSAC

Tree of binary coders: recursive n-bit coder h(n)(x).

BHF	 details:	 Boosted	 Hashing	 Forest	
Boosted Hashing Forest (BHF) is formed via the boosting of hashing trees with
optimization of joint objective function for all trees (Algorithm 3).

Algorithm 3: Boosted Hashing Forest
Input data: X, J, nORC, nBHF.
Output data: h(x): x∈Rm → y∈{0,1}n.
Initialization:

l:=0; h[1,0]:= ().
Repeat iterations:

l:= l+1;
Form the objective as a function of l-th coding tree:

J[l](X, h[l,l]) = J(X, h[1,l-1], h[l,l]);
Learn l-th coding tree:

h[l,l] := GreedyORC(J[l], X, nORC);
Add l-th coding tree to the hashing forest:

h[1,l](x) := (h[1,l-1](x), h[l,l](x));
while l<nORC. // stop if the given size of coder is got

BHF parameters and notation:
nORC = p is a depth of coding tree; nBHF = n/p is a number of trees;
h[1,l] = (h(1)(x),…,h(lp)(x)), h[1,l-1] = (h(1)(x),…,h(lp-p)(x)), h[l,l] = (h(lp-p+1)(x),…,h(lp)(x)).

BHF	 details:	 Boosted	 Hashing	 Forest	
Boosted Hashing Forest (BHF) is formed via the boosting of hashing trees with
optimization of joint objective function for all trees (Algorithm 3).

Algorithm 3: Boosted Hashing Forest
Input data: X, J, nORC, nBHF.
Output data: h(x): x∈Rm → y∈{0,1}n.
Initialization:

l:=0; h[1,0]:= ().
Repeat iterations:

l:= l+1;
Form the objective as a function of l-th coding tree:

J[l](X, h[l,l]) = J(X, h[1,l-1], h[l,l]);
Learn l-th coding tree:

h[l,l] := GreedyORC(J[l], X, nORC);
Add l-th coding tree to the hashing forest:

h[1,l](x) := (h[1,l-1](x), h[l,l](x));
while l<nORC. // stop if the given size of coder is got

BHF parameters and notation:
nORC = p is a depth of coding tree; nBHF = n/p is a number of trees;
h[1,l] = (h(1)(x),…,h(lp)(x)), h[1,l-1] = (h(1)(x),…,h(lp-p)(x)), h[l,l] = (h(lp-p+1)(x),…,h(lp)(x)).

+	

BHF	 details:	 Boosted	 Hashing	 Forest	
Boosted Hashing Forest (BHF) is formed via the boosting of hashing trees with
optimization of joint objective function for all trees (Algorithm 3).

Algorithm 3: Boosted Hashing Forest
Input data: X, J, nORC, nBHF.
Output data: h(x): x∈Rm → y∈{0,1}n.
Initialization:

l:=0; h[1,0]:= ().
Repeat iterations:

l:= l+1;
Form the objective as a function of l-th coding tree:

J[l](X, h[l,l]) = J(X, h[1,l-1], h[l,l]);
Learn l-th coding tree:

h[l,l] := GreedyORC(J[l], X, nORC);
Add l-th coding tree to the hashing forest:

h[1,l](x) := (h[1,l-1](x), h[l,l](x));
while l<nORC. // stop if the given size of coder is got

BHF parameters and notation:
nORC = p is a depth of coding tree; nBHF = n/p is a number of trees;
h[1,l] = (h(1)(x),…,h(lp)(x)), h[1,l-1] = (h(1)(x),…,h(lp-p)(x)), h[l,l] = (h(lp-p+1)(x),…,h(lp)(x)).

+	

+	

BHF	 details:	 Boosted	 Hashing	 Forest	
Boosted Hashing Forest (BHF) is formed via the boosting of hashing trees with
optimization of joint objective function for all trees (Algorithm 3).

Algorithm 3: Boosted Hashing Forest
Input data: X, J, nORC, nBHF.
Output data: h(x): x∈Rm → y∈{0,1}n.
Initialization:

l:=0; h[1,0]:= ().
Repeat iterations:

l:= l+1;
Form the objective as a function of l-th coding tree:

J[l](X, h[l,l]) = J(X, h[1,l-1], h[l,l]);
Learn l-th coding tree:

h[l,l] := GreedyORC(J[l], X, nORC);
Add l-th coding tree to the hashing forest:

h[1,l](x) := (h[1,l-1](x), h[l,l](x));
while l<nORC. // stop if the given size of coder is got

BHF parameters and notation:
nORC = p is a depth of coding tree; nBHF = n/p is a number of trees;
h[1,l] = (h(1)(x),…,h(lp)(x)), h[1,l-1] = (h(1)(x),…,h(lp-p)(x)), h[l,l] = (h(lp-p+1)(x),…,h(lp)(x)).

+	

+	

+	

BHF	 details:	 Coding	 metric	 space	

Metric space (Y, dY: Y×Y →R+) is n-bit binary coded, if
• the each y∈Y corresponds to unique b∈{0,1}n,
• two decoding functions are given:
• feature decoder fy(b): {0,1}n → Y
• distance decoder fd(b1,b2): {0,1}n×{0,1}n → R+,

fd(b1,b2) = dY(fy(b1), fy(b2)).

Metric space coding:
• optimization of Distance-based objective function (DBOF)

J(X,h) → min(h) ⇔ J(DY) → min(DY),
 (7)
DY ={dij = fd(h(xi), h(xj)), xi,xj∈X, h(x)∈H}i,j=1,…,N.

Such objective function depends on the set of coded distances
dij only.

BHF	 implementa/on:	 Forest	 code	 matching	
via	 Sum	 of	 Search	 Index	 Distances	

We match tree codes via Search Index Distance (SID) – geodesic distance between binary
codes as corresponding leaves on the coding tree:

dT(y1,y2) = fdT(b1,b2) = 2 ∑ k=1,…,p (1 – ∏ l=1,…,k (1 – |b1
(l) – b2

(l)|)).

Example. Let p=4, b1 = (1,0,1,1) and b2 = (1,0,0,1).
Corresponding vertices on the coding tree are marked as blue (b1), red (b2) and purple (joint):

 root
 0 1
 0 1 0 1
 0 1 0 1 0 1 0 1
 0 1 01 01 01 0 1 0 1 0 1 0 1
The distance between blue and red leaves is 4 (2 levels up + 2 levels down):
dT((1,0,1,1),(1,0,0,1)) = 2 (1 – (1 – 0) +
 1 – (1 – 0)×(1 – 0) +
 1 – (1 – 0)×(1 – 0) ×(1 – 1) +
 1 – (1 – 0)×(1 – 0) ×(1 – 1)×(1 – 1)) = 2 (0 + 0 + 1 + 1) = 4.
End of example.

Finally, we match forest codes via Sum of Search Index Distances (SSID) between trees:

dij = ∑ l=1,…,q fdT(h[l,l](xi), h[l,l](xj)).

BHF	 implementa/on:	 Forest	 code	 matching	
via	 Sum	 of	 Search	 Index	 Distances	

We match tree codes via Search Index Distance (SID) – geodesic distance between binary
codes as corresponding leaves on the coding tree:

dT(y1,y2) = fdT(b1,b2) = 2 ∑ k=1,…,p (1 – ∏ l=1,…,k (1 – |b1
(l) – b2

(l)|)).

Example. Let p=4, b1 = (1,0,1,1) and b2 = (1,0,0,1).
Corresponding vertices on the coding tree are marked as blue (b1), red (b2) and purple (joint):

 root
 0 1
 0 1 0 1
 0 1 0 1 0 1 0 1
 0 1 01 01 01 0 1 0 1 0 1 0 1
The distance between blue and red leaves is 4 (2 levels up + 2 levels down):
dT((1,0,1,1),(1,0,0,1)) = 2 (1 – (1 – 0) +
 1 – (1 – 0)×(1 – 0) +
 1 – (1 – 0)×(1 – 0) ×(1 – 1) +
 1 – (1 – 0)×(1 – 0) ×(1 – 1)×(1 – 1)) = 2 (0 + 0 + 1 + 1) = 4.
End of example.

Finally, we match forest codes via Sum of Search Index Distances (SSID) between trees:

dij = ∑ l=1,…,q fdT(h[l,l](xi), h[l,l](xj)).

BHF	 implementa/on:	 Objec/ve	 func/on	 for	 face	 verifica/on	
Similarity function s describes positive (authentic) and negative (imposter) pairs:

Goal distance for k-bit binary code:

Distance supervision objective function:

JDist(DY) = ∑i=1,…,N ∑j=1,…,N vij (dij – gij)2 →min(DY = {dij}i,j=1,…,N),
where vij – different weights for authentic and imposter pairs.

Such objective function controls the verification performance (FAR-FRR).

BHF	 implementa/on:	 Objec/ve	 func/on	 for	 face	
iden/fica/on	

Identification task requires controlling both distances and ordering of distances.
Let for the query h(xk):

d1
k = maxl{dkl: skl = 1} – distance to the most far authentic;
d0

k = minl{dkl: skl = 0} – distance to the closest imposter

Ordering error eij for a pair (xi,xj):

(occurs if imposter is closer than authentic or authentic is more far than imposter)

Distance order supervision objective function:

JOrd(DY) = ∑i=1,…,N ∑j=1,…,N vij (dij – gij)2 eij → min(DY = {dij}i,j=1,…,N).

penalizes the difference between dij and objective distance gij,
but only in case that the ordering error eij occurs for this pair.

Such objective function (12) controls the face identification characteristics (CMC).

BHF	 implementa/on:	 Objec/ve	 func/on	 for	 face	 	
verifica/on	 and	 iden/fica/on	

Distance and Distance order supervision objective function:

J(DY) = α JDist(DY) + (1 – α) JOrd(DY) =
 = ∑i=1,…,N ∑j=1,…,N vij (dij – gij)2 (eij + α(1 – eij)) →
 → min(DY = {dij}i,j=1,…,N),

where α∈[0,1] is a tuning parameter for balancing distance and
distance order influence.

Such objective function controls both the face verification and
face identification characteristics.

BHF	 implementa/on:	 semi-‐heuris/c	 tricks	

Modification of goal distance:

where m(k-1)

1 and σ(k-1)
1 are the mean value and standard

deviation of authentic coded distances.
Goal distance excludes the penalizing of imposter pairs, which
could not be treated as authentic.

For	 possible	 quesMons	

BHF	 implementa/on:	 semi-‐heuris/c	 tricks	

We use the adaptive weighting of pairs at each k-th step of
boosting:

a(k) = ∑i=1,…,N ∑j=1,…,N sij (dij – gij)2 (eij + α(1 – eij)),
b(k) = ∑i=1,…,N ∑j=1,…,N (1 –sij) (dij – gij)2 (eij + α(1 – eij)),

where a(k) and b(k) provide the basic equal weight for all
authentic and imposter pairs,
and tuning parameter γ>1 gives the slightly larger weights to
authentic pairs.

For	 possible	 quesMons	

BHF	 implementa/on:	 semi-‐heuris/c	 tricks	

Selection and processing of subvectors of the input feature vector:
We split the input m-dimensional feature vector to the set of
independently coded subvectors with fixed sizes from the set
m = {mmin,…,mmax}. At the each step of boosting we get the subvector
with corresponding BHF elementary coder providing the best contribution
to the objective function.

Creation of ensemble of independent hash codes:
The output binary vector of size n consists of some independently grown
parts of size nBHF<n. Such learning strategy prevents the premature
saturation of objective function.

For	 possible	 quesMons	

BHF	 implementa/on:	 tuning	 parameters	

Set of implemented BHF free parameters:
• m = {mmin,…,mmax} – set of sizes for independently coded input

subvectors;
• nORC – depth of hashing trees;
• nBHF – number of trees in the hashing forests;
• kRANSAC – number of RANSAC iterations for each projection;
• α – objective function tuning parameter for balancing distance and

distance order influence;
• γ – tuning parameter, which gives slightly larger weights to authentic

pairs;

In general, coded metrics is a free parameter of our approach too, but in
this paper we use the Sum of Search Index Distances (SSID) only.

EXPERIMENTS	

Content	 of	 experimental	 part	
•  Methodology:	 learning	 and	 tes:ng	 CNHF;	
•  Hamming	 embedding:	 CNHL	 vs.	 CNN;	
•  Hamming	 embedding:	 BHF	 vs.	 Boosted	 SSC;	
•  Proposed	 BHF	 w.r.t.	 original	 Boosted	 SSC;	
•  CNHF	 performance	 w.r.t.	 depth	 of	 coding	 trees;	
•  CNHL	 and	 CNHF	 vs.	 best	 methods	 on	 LFW.	

EXPERIMENTS:	 learning	 and	 tes/ng	 CNHF	

CNN Learning
• training dataset: CASIA-WebFace;
• face alignment:

• rotation of eye points to horizontal
position with fixed eye-to-eye distance

• crop to 128х128 size;
• training framework: open source

Caffe (http://caffe.berkeleyvision.org/);
• training technique: training for multi-class

face identification in the manner of
Y. Sun at al., “Deep learning face representation from predicting
10,000 classes,” 2014.
X. Wu, “Learning robust deep face representation,” 2015.

EXPERIMENTS:	 learning	 and	 tes/ng	 CNHF	

Hashing forest learning
• training dataset: 1000 authentic and 999000 imposter pairs of Faces in the Wild

images (not from the testing LFW set);
• formed family of CNHF coders:

• Hamming embedding coders 2000×1 bit (250 byte), 200×1 bit (25 byte) and
32×1 bit (4 byte) of size;

• Hashing forest coders – 2000 trees with 2-7 bits depth (0.5 – 1.75 Kbyte of
size);

• BHF parameter settings:
• common settings for all CNHFs:

o m = {8, 16, 32}, kRANSAC = 500, α = 0.25, γ = 1.1;
• individual settings for number of trees in HF

(determined experimentally based on the analysis of the speed of identification
rate growing w.r.t. number of code bits in the hashing process):
o nBHF=200 for CNN+BHF-200×1,
o nBHF=500 for CNN+BHF-2000×1
o nBHF=100 for CNHF-2000×7.

EXPERIMENTS:	 learning	 and	 tes/ng	 CNHF	

CNHF and CNN evaluation
• testing dataset: Labeled Faces in the Wild (LFW);
• face alignment: all the LFW images are processed and normalized to

128х128 as in
G.-B. Huang at al., “Learning to align from scratch,” 2012;

• verification test: accuracy by the standard LFW unrestricted with
outside labeled data protocol and ROC;

• identification tests: CMC and rank-1 following the methodology
L. Best-Rowden at al., “Unconstrained face recognition: Identifying a
person of interest from a media collection,” 2014.

EXPERIMENTS:	 Hamming	 embedding*	
 *CNHF degrades to CNHL

Hamming embedding: CNHL vs. CNN

• CNN face representation: vector of activations of 256 top hidden layer neurons;
• СNN matching metrics: cosine similarity (CNN+CS) and L2-distance

(CNN+L2);
• CNHL face representations: 2000 and 200 bit-coders trained by BHF

(CNN+BHF-2000×1 and CNN+BHF-200×1);
• СNHL matching metrics: Hamming distance.

Table 1. Verification accuracy on LFW, code size and matching speed of CNN and CNHL

Solution Accuracy
on LFW	

Template
 size

Matches
 in sec

CNN+L2 0.947 8192 bit 2713222
CNN+BHF-200×1 0.963 200 bit 194986071
CNN+CS 0.975 8192 bit 2787632
CNN+BHF-2000×1 0.9814 2000 bit 27855153

Our	 200х1-‐bit	 face	 coder	 provides	 40-‐/mes	 smaller	 template	 size	 and	 70-‐/mes	 faster	 	
matching	 with	 only	 1%	 decreasing	 of	 accuracy	 rela:ve	 to	 basic	 CNN	 (96.3%	 on	 LFW)!	

EXPERIMENTS:	 Hamming	 embedding*	
 *CNHF degrades to CNHL

Hamming embedding: CNHL vs. CNN

Results:
• Our solution CNN+BHF-2000×1 achieves 98.14% on LFW, which outperforms

all other solutions based on this CNN.
• Our 25-byte solution CNN+BHF-200×1 outperforms CNN+L2.
• Table 1 additionally demonstrates the gain in template size and matching speed.

EXPERIMENTS:	 Hamming	 embedding*	
 *CNHF degrades to CNHL
Hamming embedding: Proposed BHF vs. Boosted SSC

Verification: ROC

Results:
• ROC graph for CNN+BHF is monotonously better than for CNN+BoostSSC;

EXPERIMENTS:	 Hamming	 embedding*	
 *CNHF degrades to CNHL

Hamming embedding: Proposed BHF vs. Boosted SSC

Identification: CMC

Results:
• ROC graph for CNN+BHF is monotonously better than for CNN+BoostSSC;
• CMC graphs (ranks 1-10) BHF outperforms BoostSSC (CNN+BHF-2000×1

outperforms even CNN+CS).

EXPERIMENTS:	 Hamming	 embedding*	
 *CNHF degrades to CNHL

Hamming embedding: Proposed BHF vs. Boosted SSC

Identification: Rank-1

Results:
• ROC graph for CNN+BHF is monotonously better than for CNN+BoostSSC;
• CMC graphs (ranks 1-10) BHF outperforms BoostSSC (CNN+BHF-2000×1

outperforms even CNN+CS).
• BHF outperforms Boosted SSC in identification (rank-1) on LFW for all binary

template sizes (outperforms even CNN+CS);
• maximal rank-1 is 0.91 for BHF-2000×1 and 0.865 for BoostSSC-2000×1;

EXPERIMENTS:	 Hashing	 Forest	 vs.	 Hashing	 Layer	
CNHF: 7-bit trees w.r.t. 1-bit Hamming embedding and CNN
CNHF with N output features coded each by M-bit coding trees = CNHF-N×M

ROC (a) and CMC (b) curves for CNN+CS, CNHF-2000×1 and CNHF-2000×7.
Results:
• CNHF-2000×7 achieves 98.59% on LFW.
• CNHF-2000×7 is 93% rank-1 on LFW relative to 89.9% rank-1 for CNN+CS.
• CNHF-2000×7 outperforms CNHF-2000×1 and basic CNN+CS both in

verification (ROC) and in identification (CMC).

SUMMARY	 of	 EXPERIMENTS:	
CNHF	 vs.	 CNHL,	 BHF	 vs.	 Bossted	 SSC,	

CNHL	 two-‐step	 learning	 vs.	 one-‐step	 learning	

Main	 conclusion:	 adding	 hashing	 forest	 on	 the	 top	 of	 CNN	 allows	
both	 genera:ng	 the	 compact	 binary	 face	 representa:ons	 and	
increasing	 the	 face	 verifica:on	 and	 especially	 iden:fica:on	 rates.	

1)	 For	 all	 characteris/cs	 (accuracy,	 ROC,	 rank-‐1,	 CMC):	

CNN+BHF-‐2000×7	 >	 CNN+BHF-‐2000×1	 >	 	 CNN+CS	 	 >	 	 CNN+L2	 	
2)	 For	 all	 characteris/cs	 (accuracy,	 ROC,	 rank-‐1,	 CMC)	 and	 all	 N:	

CNN+BHF×1	 >	 CNN+BoostedSSC	 	
3)	 If	 accuracy	 >	 96%	 on	 LFW	 (other	 characterisMcs	 are	 unknown)	 :	

CNN+BHF-‐200х1	 >	 CNHL-‐1000х1	 (H.	 Fan	 at	 al.,	 2014)	
(HL	 learned	 amer	 CNN)	 is	 5	 /mes	 more	 compact	 than	 (HL+CNN	 learned	 together)	 	 	

	
	
	

Nota/on:	 CNHF	 with	 N	 output	 features	 coded	 each	 by	 M-‐bit	 coding	 trees	 =	 CNHF-‐NхM	

EXPERIMENTS:	 CNHF	 performance	 w.r.t.	 depth	 of	 trees	
ROC curves for CNHF with different depth of coding trees:

Results:
• performance grows with growing

depth of trees;
• forest with 7-bit coding trees is the

best by ROC…
…but 5-bit depth solution is very close.

Supposed reason:
• limited amount of training set for

forest hashing.
(too small number of authentic pairs in
the each cell of space tessellation)

 1 bit 2 bits 3 bits 4 bits…

It’s a topic for further research!

EXPERIMENTS:	 CNHL	 and	 CNHF	 vs.	 best	 methods	 on	 LFW	

Verification accuracy on LFW:

Method Accuracy
WebFace [25] 0.9613
CNHL-200×1 0.963±0.00494
DeepFace-ensemble[21] 0.9730±0.0025
DeepID[19] 0.9745± 0.0026
MFM Net[24] 0.9777
CNHL-2000×1 0.9814
CNHF-2000×7 0.9859
DeepID2[17] 0.9915 ± 0.0013
DeepID3[18] 0.9953 ± 0.0010
Baidu[11] 0.9977 ± 0.0006

25	 bytes!	

250	 bytes	

EXPERIMENTS:	 CNHL	 and	 CNHF	 vs.	 best	 methods	 on	 LFW	
CNHF identification results:
• Our CNHF-2000×7 result is 0.93 rank-1 on LFW (real-time single net

with hashing forest).
• Best reported* DeepID3 result is 0.96 rank-1 on LFW (essentially

deeper and slower multi-patch CNN).
*Baidu declares even better result (0.98 rank-1 on LFW), but they use the
training set 1.2 million images of size w.r.t. 400 thousand images in our
case.

CNHL verification results:
• Our CNHF-2000×1 outperforms DeepFace-ensemble [30], DeepID

[27], WebFace [35] and MFM Net [34].
• DeepID2 [25], DeepID3 [26] and Baidu [14] multi-patch CNNs

outperform our CNHF-2000×1 based on single net.

*Google’s FaceNet is formally a single net too, but it is too far
from real-time

Conclusion:	 Our	 real-‐:me	 CNHF-‐2000	 solu:ons	 outperforms	
all	 single	 nets*	 and	 close	 enough	 to	 mul:-‐patch	 nets.	

CONCLUSIONS	
1. We develop the family of CNN-based binary face representations
for real-time face identification:
• Our 2000×1-bit face coder provides the compact face coding (250 byte) with

simultaneous increasing of verification (98.14%) and identification (91% rank-1)
on LFW.

• Our 200×1-bit face coder provides the 40-time gain in template size and 70-time
gain in a matching speed with 1% decreasing of verification accuracy relative to
basic CNN (96.3% on LFW).

• Our CNHF with 2000 output 7-bit coding trees (CNHF-2000×7) achieves 98.59%
verification accuracy and 93% rank-1 on LFW (add 3% to rank-1 of basic CNN).

2. We propose the multiple convolution deep network architecture for
acceleration of source Max-Feature-Map (MFM) CNN architecture:
• Our CNHF generates binary face templates at the rate of 40+ fps with

CPU Core i7
• Our CNHF generates binary face templates at the rate of 120+ fps with

GPU GeForce GTX 650

CONCLUSIONS	
3. We propose and implement the new binary hashing technique, which
forms the output feature space with given metric properties via joint optimization of
face verification and identification.
• Our Boosted Hashing Forest (BHF) technique combines the algorithmic structure

of Boosted SSC approach and the binary code structure of forest hashing.
• Our experiments demonstrate that BHF essentially outperforms the original

Boosted SSC in face identification test.

Ideas and plans for the future:
• try to achieve the better recognition rates via CNHF based on multi-patch CNN,

which we can use for non-real-time applications.
• evolve and apply the proposed BHF technique for different data coding and

dimension reduction problems (supervised, semi-supervised and unsupervised).
• investigate the influence of the output metric space properties in the process of

hashing forest learning.

Acknowledgement
This work is supported by grant from Russian Science Foundation
(Project No. 16-11-00082).

Thank you for your attention!

Real-Time Face Identification via CNN and
Boosted Hashing Forest

Yury Vizilter, Vladimir Gorbatsevich, Andrey Vorotnikov, Nikita Kostromov
State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia

viz@gosniias.ru,	 gvs@gosniias.ru,	 vorotnikov@gosniias.ru,	
nikita-‐kostromov@yandex.ru	

EXPERIMENTS:	 CNHL	 and	 CNHF	 vs.	 best	 methods	 on	 LFW	

CNHL: two-step vs. one-step learning

• 32-bit binary face representation:
• Best one-step result – 91% verification on LFW

H. Fan at al., “Learning Compact Face Representation: Packing a Face into
an int32,” 2014.

• Our two-step learned CNHF 32×1 provides 90% only.

• 96% accuracy on LFW:
• Our two-step learned CNHF-200×1 (200 bit) hash demonstrates

96.3% on LFW;
• Best one-step result requires 1000 bit for achieving the 96%

verification on LFW (our CNHF-200×1 solution improves this face
packing result in 5 times).

(H.	 Fan	 at	 al.,	 2014)	

For	 possible	 quesMons	

