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MOTIVATION:	  real-‐/me	  face	  iden/fica/on	  
•	  	  Real-‐:me	  means	  smallest	  templates	  and	  fastest	  search	  ⇒	  
	  	  	  	  binary	  templates	  with	  Hamming	  distance;	  
•	  	  State-‐of-‐the-‐art	  recogni/on	  rates	  ⇒	  
	  	  	  	  convolu:onal	  neural	  networks	  (CNN)	  with	  non-‐binary	  output	  
	  	  	  	  features	  compared	  by	  beGer	  metrics	  (L2,	  cosine,	  etc.).	  
Various	  applica/ons	  ⇒	  different	  requirements	  to:	  
•	  template	  size,	  •	  template	  genera:on	  speed,	  
•	  template	  matching	  speed,	  •	  	  recogni:on	  rate.	  
Our	  purpose:	  construct	  the	  family	  of	  face	  representa/ons,	  which	  
con/nuously	  varies	  from	  “compact	  &	  fast”	  to	  “large	  &	  powerful”…	  

…with	  the	  same	  engine.	  
	  
Is	  it	  possible?	  



MAIN	  IDEA:	  Convolu/onal	  Network	  with	  Hashing	  Forrest	  (CNHF)	  

CNHF	  =	  CNN	  +	  Hashing	  Transform	  based	  on	  Hashing	  Forest	  (HF)	  
	  

	  
	  
	  
	  
	  
	  
	  
	  

	  
	  
	  
(Depth	  of	  trees	  ×	  Coded	  metrics	  ×	  Coding	  objective)	  =	  Family	  of	  face	  
representations	  based	  on	  the	  same	  CNN.	  
	  
*In	  case	  of	  1-‐bit	  coding	  “trees”	  and	  Hamming	  distance	  CNHF	  provides	  the	  
Hamming	  embedding.	  
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RELATED	  WORK:	  CNN	  for	  face	  recogni/on	  

CNN learning approaches: 
• learn CNN for multi-class face identification with classes corresponding to persons  

Y. Taigman at al., “DeepFace: closing the gap to human-level performance in face verification,” 2014. 
E. Zhou at al., “Naive-deep face recognition: Touching the limit of LFW benchmark or not?” 2015. 

• learn the similarity metrics by training two identical CNNs (Siamese Architecture) 
H. Fan at al., “Learning deep face representation,” 2014. 
W. Wang at al., “Face recognition based on deep learning,” 2015. 

• combine these approaches 
Y. Sun at al., “Deep learning face representation by joint identification-verification,” 2014. 
Y. Sun at al., “DeepID3: Face recognition with very deep neural networks,” 2015. 

Face representation: 
• output of the (top) hidden layer: 



RELATED	  WORK:	  CNN	  for	  face	  recogni/on	  
Matching metrics: 
• L1-distance/Hamming distance 

 
 

• L2-distance 
D. Chen at al., “Blessing of dimensionality: High-dimensional feature and its efficient compression for 
face verification,” 2013. 
W. Wang at al., “Face recognition based on deep learning,” 2015. 

• cosine similarity 
Y. Sun at al., “Deep learning face representation by joint identification-verification,” 2014. 
Y. Taigman at al., “DeepFace: closing the gap to human-level performance in face verification,” 2014. 
X. Wu, “Learning robust deep face representation,” 2015. 

• other 
 

?	  =	  

H. Fan, M. Yang, Z. Cao, Y. Jiang and Q. Yin, “Learning Compact Face Representation: 
Packing a Face into an int32,” Proc. ACM Int. Conf. Multimedia, pp. 933-936, 2014. 

Our approach: 
•  any given metrics (including Hamming distance and special metrics for forest 

of binary trees matching)   



RELATED	  WORK:	  CNN	  for	  face	  recogni/on	  
CNN architectures: 
• multi-patch deep nets for different parts of face (state-of-the-art rates!) 

J. Liu	  at al., “Targeting ultimate accuracy: face recognition via deep embedding,” 2015. 
Y. Sun at al., “Deep learning face representation by joint identification-verification,” 2014. 
Y. Sun at al., “DeepID3: Face recognition with very deep neural networks,” 2015. 

• single nets (can be efficient enough with essentially lower computational cost) 
Z. Cao at al., “Face Recognition with Learning-based Descriptor” 2010. 
Omkar M. Parkhi at al., “Deep Face Recognition”, 2015 
• Max-Feature-Map (MFM) architecture 

X. Wu, “Learning robust deep face representation,” 2015. 

 
 
 
 
 
 
 
 
Our architecture: (based on the MFM architecture) 
• learning the basic single CNN with Max-Feature-Map (MFM) architecture 
• transforming the layers of learned CNN to the multiple convolution architecture 

for real-time implementation 
 
 



RELATED	  WORK:	  Binary	  Hashing	  and	  Hamming	  Embedding	  
Binary hashing techniques: 

A. Gionis at al., “Similarity search in high dimensions via 
hashing,” 1999. 
Y. Gong at al., “Iterative quantization: A procrustean 
approach to learning binary codes for large-scale image 
retrieval,” 2012. 
K. He at al., “K-means Hashing: An affinity-preserving 
quantization method for learning binary compact codes,” 2013. 
W. Liu at al., “Supervised hashing with kernels,” 2012. 
 

Manifold hashing techniques: 
• Spectral Hashing 

Y. Weiss at al., “Spectral Hashing,” 2008. 
• Topology Preserving Hashing (TPH) 

L. Zhang at al., “Topology preserving hashing 
for similarity search,” 2013. 

• Locally Linear Hashing (LLH) 
G. Irie at al., “Locally linear hashing for 
extracting non-linear manifolds,” 2014. 

ITQ	  

TPH	  

LLH	   *Figures	  are	  taken	  
	  from	  cited	  papers!	  



RELATED	  WORK:	  Binary	  Hashing	  and	  Hamming	  Embedding	  

Closest approaches: 
 
• Restricted Boltzmann 

Machines (RBM) 
R. Salakhutdinov and G. Hinton,  
“Semantic hashing,” 2009. 

• Boosted Similarity Sensitive 
Coding (Boosted SSC) 
G. Shakhnarovich, “Learning task-specific 
similarity,” 2005. 
G. Shakhnarovich at al., “Fast pose estimation 
with parameter sensitive hashing,” 2003. 
 
 

Our approach: 
 
• Boosted Hashing Forest (generalization of Boosted SSC): 

• boosting the hashing forest in the manner of Boosted SSC; 
• induction of any given metrics in the coded feature space; 
• optimizing any given task-specific objective function. 

 

RBM	  



RELATED	  WORK:	  Binary	  Hashing	  via	  Convolu/onal	  Networks	  
Closest approach: 
• binary face coding via CNN with hashing layer (CNHL) 
• learning CNN and hashing layer together via back propagation technique 

H. Fan, M. Yang, Z. Cao, Y. Jiang and Q. Yin, “Learning Compact Face 
Representation: Packing a Face into an int32,” Proc. ACM Int. Conf. Multimedia, 
pp. 933-936, 2014. 

 
Great result: 32-bit binary face representation provides 91% verification on LFW! 
 
Problems: 
• results for larger templates are too far from state-of-the-art; 
• direct optimization of more complex face coding criterions is not available; 
• we cannot perform the learning if CNHF via back propagation. 
 
Our approach: 
• binary face coding via CNN with hashing transform 
• go back to the two-step learning procedure: 

• learn basic CNN first, 
• learn hashing transform second. 



RELATED	  WORK:	  Forest	  Hashing	  and	  Boosted	  Forest	  
Previous Forest Hashing techniques (non-boosted): 
• random forest semantic hashing scheme with information-

theoretic code aggregation 
Q. Qiu at al., “Random Forests Can Hash,” 2014. 

• feature induction based on random forest for learning 
regression and multi-label classification 
C. Vens and F. Costa, “Random Forest Based Feature Induction”, 

    2011. 
• forest hashing with special order-sensitive Hamming distance 

G. Yu and J. Yuan, “Scalable forest hashing for fast similarity search”, 
    2014. 
• combination of kd-trees with hashing technique 

J. Springer at al., “Forest hashing: Expediting large scale image 
retrieval,” 2013. 

 

Previous Boosted Forest approach: 
• Boosted Random Forest (out of the binary hashing topic) 

Y. Mishina at al., “Boosted Random Forest,” 2015. 
 

Our approach: 
• Boosted Hashing Forest (generalization of Boosted SSC): 

• metric feature space induction via forest hashing; 
• hashing forest boosting in the manner of Boosted SSC; 
• optimizing the biometric-specific objective function. 

 



SUMMARY	  OF	  INTRODUCTION	  
Contributions of this paper: 

(1) The family of real-time face representations based on multiple 
convolution CNN with hashing forest (CNHF); 

(2) New biometric-specific objective function for joint optimization of 
face verification and identification; 

(3) Boosted Hashing Forest (BHF) technique for optimized feature 
induction with generic form of coding objective, coded feature space and 
hashing function. 

 
Content of presentation reminder: 
• Architecture and learning of CNHF with 

multiple convolution layers; 
• Boosted Hashing Forest technique and 

its implementation for face coding; 
• Experimental results on LFW 
• Conclusion and discussion 
 



CNHF:	  basic	  single	  net	  with	  MFM	  architecture	  
Original Max-Feature-Map (MFM) architecture: 
• Max-Feature-Map instead of ReLU activation function 
• 4 convolutional layers 
• 4 layers of pooling + MFM pooling 
• 1 fully connected layer 
• 1 sofmax layer 

 
X. Wu, “Learning robust deep face representation,” 2015. 



CNHF:	  basic	  CNN	  +	  Hashing	  Forest	  (HF)	  

 

 
1 coding tree ↔ 1 coded feature 
Hashing forest ↔ Objective feature space with Objective metrics 
(Depth of trees × Objective metrics × Objective function) = 
= Family of face representations* 
*1-bit coding “trees” + Hamming distance = CNHL for Hamming embedding 
 



CNHF:	  forming	  and	  learning	  
Two-step CNHF learning scheme: 
• learn basic CNN for multi-class face identification; 
• learn hashing transform for joint face verification and identification. 
 
CNHF forming and learning (more details about CNN 
implementation): 
1. learn the source CNN for multi-class face identification with classes 

corresponding to persons via back-propagation; 
2. transform CNN to the multiple convolution architecture via 

substitution of each convolutional layer by the superposition of 
some (2-4) simpler convolutional layers (decreasing the number of 
multiplication operations); 

3. train again the transformed CNN for multi-class face identification 
via back-propagation; 

4. replace the output soft-max layer of transformed CNN by 
hashing forest and train the hashing forest. 



Steps	  2&3:	  Mul/ple	  convolu/on	  CNN	  transforma/on	  
Idea:	  Replace	  big	  convolu:onal	  filters	  by	  sequences	  of	  small	  filters	  and	  1x1xN	  filters	  
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Input	  and	  output	  dimensions	  are	  equal	  
	  
Transformed	  layer	  relearning	  by	  back	  propaga/on:	  

Reference	  layer	  

Mul:conv	  layer	  

Input	  

Reference	  signal	  

Euclidean	  loss	  
Error	  

Fast	  relearning	  (small	  layer	  sizes)!	  
No	  need	  to	  relearn	  all	  network!	  
	  

Finally:	  fine	  tune	  the	  whole	  network	  aaer	  replacing	  all	  convolu:onal	  layers	  



CNHF:	  mul/ple	  convolu/on	  architecture	  and	  performance	  
Our CNHF architecture: 
• Max-Feature-Map instead of ReLU activation function 
• 10 convolutional layers 
• 4 layers of pooling + MFM pooling 
• 1 fully connected layer 
• hashing forest 

 
CNHF performance: 
• 40+ fps with CPU Core i7 (real-time without GPU) 
• 120+ fps with GPU GeForce GTX 650 

5	  :mes	  faster!	  



FACE	  CODING:	  Boosted	  Hashing	  Forest	  (BHF)	  

Boosted Hashing Forest (BHF): 
• algorithmic structure of Boosted SSC; 
• binary code structure of Forest Hashing; 
• support of any objective metrics and objective functions 
 
Original Boosted SSC 
• optimizes the performance of L1 distance in the 

embedding space 
• as a proxy for the pairwise similarity function, 
• which is conveyed by a set of examples of positive 

(similar) and negative (dissimilar) pairs. 
 



FACE	  CODING:	  Boosted	  Hashing	  Forest	  (BHF)	  
Main parts of original Boosted SSC: 
• SSC algorithm takes pairs labeled by similarity and produces a binary 

embedding space.  
o The embedding is learned by independent collecting thresholded 

projections of the input data.  
o The threshold is selected by optimal splitting the projections of 

negative pairs and non-splitting the projections of positive pairs.  
• Boosted SSC algorithm collects the embedding dimensions greedily 

with adaptive weighting of samples and features like in AdaBoost. 
• BoostPro algorithm uses a soft thresholding for gradient-based 

learning of projections. 
 

*Figure	  from	  
G.	  Shakhnarovich,	  “Learning	  task-‐specific	  similarity,”	  2005.	  



FACE	  CODING:	  Boosted	  Hashing	  Forest	  (BHF)	  
Proposed BHF w.r.t. original Boosted SSC: 
 

 Original Boosted SSC Proposed BHF 
output features binary features binary coded non-binary features 
data coding structure binary hashing vector hashing forest of binary trees 
objective function pairwise similarity function any given objective function 
boosting algorithm iterative binary vector growing by 

adding thresholded projections  
iterative hashing forest growing 
with recursive growing of each tree 
by adding thresholded projections 

learning data 
projections 

gradient-based optimization objective-driven RANSAC search 

adaptive reweighting 
of training pairs 

AdaBoost-style reweighting directly based on the contribution of 
this pair to the objective function 

output metric space 
(matching metrics) 

weighted Hamming space any given metric space (including 
Hamming space, if required) 

 

Our BHF implementation for face coding: 
• new biometric-specific objective function with joint optimization of face 

verification and identification; 
• selection and processing of subvectors of the input feature vector; 
• creation of ensemble of output hash codes for overcoming the limitations of 

greedy learning. 



BHF	  details:	  Objec/ve-‐driven	  Recurrent	  Coding	  
Training set: X= {xi∈Rm}i=1,…,N (N objects described by m-
dimensional feature space). 
Mapping X to the n-dimensional binary space (n-bit coder): 
 

h(n)(x): x∈Rm → b∈{0,1}n   
 
Elementary coder (1-bit hashing function): 
 

h(x): x∈Rm → b∈{0,1},h(n)(x) = (h(1)(x),…,h(n)(x)). 
 
Objective function to be minimized via learning: 

 
J(X,h(n)) → min(h(n)). 

 

Formal	  statement	  



BHF	  details:	  Objec/ve-‐driven	  Recurrent	  Coding	  
Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm 
sequentially forms the bits of coder in a recurrent manner (Algorithm 1) 
 
Algorithm 1: Greedy ORC 
Input data: X, J, nORC. 
Output data: 
   h(x): x∈Rm → y∈{0,1}nORC, h(x)∈H. 
Initialization: 

Step 0. k:=0; h(k) := ( ). 
Repeat iterations: 

k:= k+1; 
Learn k-th elementary coder: 

h(k)(x, h(k-1)):= Learn1BitHash(J, X, h(k-1)); 
Add k-th elementary coder to the  
hashing function: 

h(k)(x) := (h(k-1)(x), h(k)(x, h(k-1)));  
// concatenation 

while k<nORC. // stop if the given size is got 
 

=	  

1	  



BHF	  details:	  Objec/ve-‐driven	  Recurrent	  Coding	  
Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm 
sequentially forms the bits of coder in a recurrent manner (Algorithm 1) 
 
Algorithm 1: Greedy ORC 
Input data: X, J, nORC. 
Output data: 
   h(x): x∈Rm → y∈{0,1}nORC, h(x)∈H. 
Initialization: 

Step 0. k:=0; h(k) := ( ). 
Repeat iterations: 

k:= k+1; 
Learn k-th elementary coder: 

h(k)(x, h(k-1)):= Learn1BitHash(J, X, h(k-1)); 
Add k-th elementary coder to the  
hashing function: 

h(k)(x) := (h(k-1)(x), h(k)(x, h(k-1)));  
// concatenation 

while k<nORC. // stop if the given size is got 
 

=	  

+	  

10	  



BHF	  details:	  Objec/ve-‐driven	  Recurrent	  Coding	  
Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm 
sequentially forms the bits of coder in a recurrent manner (Algorithm 1) 
 
Algorithm 1: Greedy ORC 
Input data: X, J, nORC. 
Output data: 
   h(x): x∈Rm → y∈{0,1}nORC, h(x)∈H. 
Initialization: 

Step 0. k:=0; h(k) := ( ). 
Repeat iterations: 

k:= k+1; 
Learn k-th elementary coder: 

h(k)(x, h(k-1)):= Learn1BitHash(J, X, h(k-1)); 
Add k-th elementary coder to the  
hashing function: 

h(k)(x) := (h(k-1)(x), h(k)(x, h(k-1)));  
// concatenation 

while k<nORC. // stop if the given size is got 
 

=	  

+	  

+	  

101	  



BHF	  details:	  Objec/ve-‐driven	  Recurrent	  Coding	  
Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm 
sequentially forms the bits of coder in a recurrent manner (Algorithm 1) 
 
Algorithm 1: Greedy ORC 
Input data: X, J, nORC. 
Output data: 
   h(x): x∈Rm → y∈{0,1}nORC, h(x)∈H. 
Initialization: 

Step 0. k:=0; h(k) := ( ). 
Repeat iterations: 

k:= k+1; 
Learn k-th elementary coder: 

h(k)(x, h(k-1)):= Learn1BitHash(J, X, h(k-1)); 
Add k-th elementary coder to the  
hashing function: 

h(k)(x) := (h(k-1)(x), h(k)(x, h(k-1)));  
// concatenation 

while k<nORC. // stop if the given size is got 
 

=	  

+	  

+	  

+	   1011…	  



BHF	  details:	  Learning	  elementary	  linear	  classifier	  
	  via	  RANSAC	  algorithm	  

At the k-th step of coder growing we select the k-th elementary coder 
 

J(X,h(k)) = J(X,h(k-1),h(k)) → min{h(k) ∈ H}, 
 

Let H is a class of binary linear classifiers of the form 
 
h(w, t, x) = sgn(∑k=1,…,m wk xk + t),  
where w – vector of weights, t – threshold of hashing function, 
sgn(u) = {1, if u > 0; 0 - otherwise}. 
 
In this case objective function depends on w and t only: 
 
J(X,h(k-1),h(k)) = J(X, h(k-1), w, t) → min{w∈Rm, t∈R}. 
 
We use RANSAC for finding the projection w and threshold t, which 
approximately minimizes the objective function. 

Formal	  statement	  



BHF	  details:	  Learning	  elementary	  linear	  classifier	  
	  via	  RANSAC	  algorithm	  

Projection determination: 
• Iterative random selection of dissimilar pairs in a training set as vectors 

of hyperplane direction and searching for corresponding optimal threshold; 
• taking the projection and threshold, which provide the best value of objective 

function. 
 

Algorithm 2: RANSAC Learn1ProjectionHash 
Input data: J, X, h(k-1), kRANSAC. 
Output data: h(w, t, x). 
Initialization: 

Step 0. k:=0; Jmax:=-∞. 
Repeat iterations: 

k:= k+1; 
Step 1. Take the random dissimilar pair (xi ,xj) in X. 
Step 2. Get vector (xi,xj) as a vector of hyperplane direction: wk:=xj –  xi. 
Step 3. Calculate the threshold tk minimizing J (6) by t with w=wk: 
tk:=argmint J(X, h(k-1), wk, t). 
Step 4. If J(X, h(k-1), wk, tk) > Jmax, then 
              Jmax:= J(X, h(k-1), wk, tk); w:= wk; t:= tk. 

while k<kRANSAC. // stop if the given number of RANSAC iterations is achieved 
 



BHF	  details:	  Learning	  elementary	  linear	  classifier	  
	  via	  RANSAC	  algorithm	  

Projection determination: 
• Iterative random selection of dissimilar pairs in a training set as vectors 

of hyperplane direction and searching for corresponding optimal threshold; 
• taking the projection and threshold, which provide the best value of objective 

function. 
 

Algorithm 2: RANSAC Learn1ProjectionHash 
Input data: J, X, h(k-1), kRANSAC. 
Output data: h(w, t, x). 
Initialization: 

Step 0. k:=0; Jmax:=-∞. 
Repeat iterations: 

k:= k+1; 
Step 1. Take the random dissimilar pair (xi ,xj) in X. 
Step 2. Get vector (xi,xj) as a vector of hyperplane direction: wk:=xj –  xi. 
Step 3. Calculate the threshold tk minimizing J (6) by t with w=wk: 
tk:=argmint J(X, h(k-1), wk, t). 
Step 4. If J(X, h(k-1), wk, tk) > Jmax, then 
              Jmax:= J(X, h(k-1), wk, tk); w:= wk; t:= tk. 

while k<kRANSAC. // stop if the given number of RANSAC iterations is achieved 
 



BHF	  details:	  Learning	  elementary	  linear	  classifier	  
	  via	  RANSAC	  algorithm	  

Projection determination: 
• Iterative random selection of dissimilar pairs in a training set as vectors 

of hyperplane direction and searching for corresponding optimal threshold; 
• taking the projection and threshold, which provide the best value of objective 

function. 
 

Algorithm 2: RANSAC Learn1ProjectionHash 
Input data: J, X, h(k-1), kRANSAC. 
Output data: h(w, t, x). 
Initialization: 

Step 0. k:=0; Jmax:=-∞. 
Repeat iterations: 

k:= k+1; 
Step 1. Take the random dissimilar pair (xi ,xj) in X. 
Step 2. Get vector (xi,xj) as a vector of hyperplane direction: wk:=xj –  xi. 
Step 3. Calculate the threshold tk minimizing J (6) by t with w=wk: 
tk:=argmint J(X, h(k-1), wk, t). 
Step 4. If J(X, h(k-1), wk, tk) > Jmax, then 
              Jmax:= J(X, h(k-1), wk, tk); w:= wk; t:= tk. 

while k<kRANSAC. // stop if the given number of RANSAC iterations is achieved 
 



BHF	  details:	  Learning	  elementary	  linear	  classifier	  
	  via	  RANSAC	  algorithm	  

Projection determination: 
• random selection of dissimilar pairs in a training set as a vector of hyperplane 

direction. 

Threshold determination: 
• The idea of Boosted SSC “ThresholdRate” algorithm is implemented for direct 

optimization of the global objective function: 

*Figure	  from	  G.	  Shakhnarovich,	  “Learning	  task-‐specific	  similarity,”	  2005.	  

•  Sort	  projec/ons	  of	  objects	  of	  training	  set	  onto	  the	  current	  projec/on	  direc/on	  w 
•  For	  each	  t	  accumulate	  penal/es	  for	  separated	  similar	  and	  non-‐separated	  dissimilar	  pairs	  	  



BHF	  details:	  Recursive	  coding	  and	  Trees	  of	  coders	  
Consider the tessellation of X by n-bit coder: 
 

XB = {Xb, b∈{0,1}n}, Xb = {x∈X: h(x)=b}, X = ∪b∈{0,1}n X b. 
 
Recursive coding is a dichotomy of training set with finding the optimized 
elementary coder for each subset at each level of tessellation: 
 

 
                                               1 bit              2 bits             3 bits             4 bits… 
 
Elementary recursive coder for k-th bit: 
 

h(k)(x, h(k-1)) = h(w(h(k-1)(x)), t(h(k-1)(x)), x), 
h(k)(x, h(k-1)) = Learn1BitHash(J, X, h(k-1)) = 
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BHF	  details:	  Boosted	  Hashing	  Forest	  
Boosted Hashing Forest (BHF) is formed via the boosting of hashing trees with 
optimization of joint objective function for all trees (Algorithm 3). 
 
Algorithm 3: Boosted Hashing Forest 
Input data: X, J, nORC, nBHF. 
Output data: h(x): x∈Rm → y∈{0,1}n. 
Initialization: 

l:=0; h[1,0]:= ( ). 
Repeat iterations: 

l:= l+1; 
Form the objective as a function of l-th coding tree: 

J[l](X, h[l,l]) = J(X, h[1,l-1], h[l,l]); 
Learn l-th coding tree: 

h[l,l] := GreedyORC(J[l], X, nORC); 
Add l-th coding tree to the hashing forest: 

h[1,l](x) := (h[1,l-1](x), h[l,l](x)); 
while l<nORC. // stop if the given size of coder is got 

 

 
BHF parameters and notation: 
nORC = p is a depth of coding tree; nBHF = n/p is a number of trees; 
h[1,l] = (h(1)(x),…,h(lp)(x)), h[1,l-1] = (h(1)(x),…,h(lp-p)(x)), h[l,l] = (h(lp-p+1)(x),…,h(lp)(x)). 
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BHF	  details:	  Coding	  metric	  space	  

Metric space (Y,  dY: Y×Y →R+) is n-bit binary coded, if 
• the each y∈Y corresponds to unique b∈{0,1}n, 
• two decoding functions are given: 
• feature decoder fy(b): {0,1}n → Y  
• distance decoder fd(b1,b2): {0,1}n×{0,1}n → R+,  

fd(b1,b2) = dY(fy(b1), fy(b2)). 
 
Metric space coding: 
• optimization of Distance-based objective function (DBOF) 

 
J(X,h) → min(h) ⇔ J(DY) → min(DY),    
 (7) 
DY ={dij = fd(h(xi), h(xj)), xi,xj∈X, h(x)∈H}i,j=1,…,N. 
 

Such objective function depends on the set of coded distances 
dij only. 



BHF	  implementa/on:	  Forest	  code	  matching	  
via	  Sum	  of	  Search	  Index	  Distances	  

We match tree codes via Search Index Distance (SID) – geodesic distance between binary 
codes as corresponding leaves on the coding tree: 
 

dT(y1,y2) = fdT(b1,b2) = 2 ∑ k=1,…,p (1 – ∏ l=1,…,k (1 – |b1
(l) – b2

(l)|)). 
 

Example. Let p=4, b1 = (1,0,1,1) and b2 = (1,0,0,1).  
Corresponding vertices on the coding tree are marked as blue (b1), red (b2) and purple (joint): 

                       root                           
                0                   1                    
           0        1         0         1              
        0   1   0   1    0   1     0   1           
      0 1 01 01 01 0 1 0 1 0 1 0  1        
The distance between blue and red leaves is 4 (2 levels up + 2 levels down): 
dT((1,0,1,1),(1,0,0,1)) = 2 ( 1 – (1 – 0) +  
                                            1 – (1 – 0)×(1 – 0) + 
                                            1 – (1 – 0)×(1 – 0) ×(1 – 1) + 
                                            1 – (1 – 0)×(1 – 0) ×(1 – 1)×(1 – 1) ) = 2 ( 0 + 0 + 1 + 1) = 4. 
End of example. 

Finally, we match forest codes via Sum of Search Index Distances (SSID) between trees: 

dij = ∑ l=1,…,q fdT(h[l,l](xi), h[l,l](xj)). 
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BHF	  implementa/on:	  Objec/ve	  func/on	  for	  face	  verifica/on	  
Similarity function s describes positive (authentic) and negative (imposter) pairs: 

 
        
 

Goal distance for k-bit binary code: 
 
 
          

Distance supervision objective function: 
 

JDist(DY) = ∑i=1,…,N ∑j=1,…,N vij (dij – gij)2 →min(DY = {dij}i,j=1,…,N), 
where vij – different weights for authentic and imposter pairs. 
 
Such objective function controls the verification performance (FAR-FRR). 



BHF	  implementa/on:	  Objec/ve	  func/on	  for	  face	  
iden/fica/on	  

Identification task requires controlling both distances and ordering of distances. 
Let for the query h(xk): 

d1
k = maxl{dkl: skl = 1} – distance to the most far authentic; 
d0

k = minl{dkl: skl = 0} – distance to the closest imposter 
 
Ordering error eij for a pair (xi,xj): 

 
 

          
 
(occurs if imposter is closer than authentic or authentic is more far than imposter) 
 
Distance order supervision objective function: 
 

JOrd(DY) = ∑i=1,…,N ∑j=1,…,N vij (dij – gij)2 eij → min(DY = {dij}i,j=1,…,N). 
 
penalizes the difference between dij and objective distance gij, 
but only in case that the ordering error eij occurs for this pair.  
 
Such objective function (12) controls the face identification characteristics (CMC). 
 



BHF	  implementa/on:	  Objec/ve	  func/on	  for	  face	  	  
verifica/on	  and	  iden/fica/on	  

Distance and Distance order supervision objective function: 
 

J(DY) = α JDist(DY) + (1 – α) JOrd(DY) = 
      = ∑i=1,…,N ∑j=1,…,N vij (dij – gij)2 (eij + α(1 – eij)) → 
                                       → min(DY = {dij}i,j=1,…,N),   

where α∈[0,1] is a tuning parameter for balancing distance and 
distance order influence. 
 
Such objective function controls both the face verification and 
face identification characteristics. 
 



BHF	  implementa/on:	  semi-‐heuris/c	  tricks	  

Modification of goal distance: 
 
 

           
 
 
where m(k-1)

1 and σ(k-1)
1 are the mean value and standard 

deviation of authentic coded distances. 
Goal distance excludes the penalizing of imposter pairs, which 
could not be treated as authentic. 

For	  possible	  quesMons	  



BHF	  implementa/on:	  semi-‐heuris/c	  tricks	  

We use the adaptive weighting of pairs at each k-th step of 
boosting: 
 

 
          
 
 

a(k) = ∑i=1,…,N ∑j=1,…,N sij (dij – gij)2 (eij + α(1 – eij)), 
b(k) = ∑i=1,…,N ∑j=1,…,N (1 –sij) (dij – gij)2 (eij + α(1 – eij)), 
 
where a(k) and b(k) provide the basic equal weight for all 
authentic and imposter pairs,  
and tuning parameter γ>1 gives the slightly larger weights to 
authentic pairs. 

For	  possible	  quesMons	  



BHF	  implementa/on:	  semi-‐heuris/c	  tricks	  

Selection and processing of subvectors of the input feature vector: 
We split the input m-dimensional feature vector to the set of 
independently coded subvectors with fixed sizes from the set 
m = {mmin,…,mmax}. At the each step of boosting we get the subvector 
with corresponding BHF elementary coder providing the best contribution 
to the objective function. 
 
Creation of ensemble of independent hash codes: 
The output binary vector of size n consists of some independently grown 
parts of size nBHF<n. Such learning strategy prevents the premature 
saturation of objective function. 
 

For	  possible	  quesMons	  



BHF	  implementa/on:	  tuning	  parameters	  

Set of implemented BHF free parameters: 
• m = {mmin,…,mmax} – set of sizes for independently coded input 

subvectors; 
• nORC – depth of hashing trees; 
• nBHF – number of trees in the hashing forests; 
• kRANSAC – number of RANSAC iterations for each projection; 
• α – objective function tuning parameter for balancing distance and 

distance order influence; 
• γ  – tuning parameter, which gives slightly larger weights to authentic 

pairs; 
 
In general, coded metrics is a free parameter of our approach too, but in 
this paper we use the Sum of Search Index Distances (SSID) only. 



EXPERIMENTS	  

Content	  of	  experimental	  part	  
•  Methodology:	  learning	  and	  tes:ng	  CNHF;	  
•  Hamming	  embedding:	  CNHL	  vs.	  CNN;	  
•  Hamming	  embedding:	  BHF	  vs.	  Boosted	  SSC;	  
•  Proposed	  BHF	  w.r.t.	  original	  Boosted	  SSC;	  
•  CNHF	  performance	  w.r.t.	  depth	  of	  coding	  trees;	  
•  CNHL	  and	  CNHF	  vs.	  best	  methods	  on	  LFW.	  



EXPERIMENTS:	  learning	  and	  tes/ng	  CNHF	  

 
CNN Learning 
• training dataset: CASIA-WebFace; 
• face alignment: 

• rotation of eye points to horizontal 
position with fixed eye-to-eye distance 

• crop to 128х128 size; 
• training framework: open source 

Caffe (http://caffe.berkeleyvision.org/); 
• training technique: training for multi-class 

face identification in the manner of 
Y. Sun at al., “Deep learning face representation from predicting 
10,000 classes,” 2014. 
X. Wu, “Learning robust deep face representation,” 2015. 

 



EXPERIMENTS:	  learning	  and	  tes/ng	  CNHF	  

Hashing forest learning 
• training dataset: 1000 authentic and 999000 imposter pairs of Faces in the Wild 

images (not from the testing LFW set); 
• formed family of CNHF coders: 

• Hamming embedding coders 2000×1 bit (250 byte), 200×1 bit (25 byte) and 
32×1 bit (4 byte) of size; 

• Hashing forest coders – 2000 trees with 2-7 bits depth (0.5 – 1.75 Kbyte of 
size); 

• BHF parameter settings: 
• common settings for all CNHFs: 

o m = {8, 16, 32}, kRANSAC = 500, α = 0.25, γ = 1.1; 
• individual settings for number of trees in HF 

(determined experimentally based on the analysis of the speed of identification 
rate growing w.r.t. number of code bits in the hashing process): 
o nBHF=200 for CNN+BHF-200×1, 
o nBHF=500 for CNN+BHF-2000×1 
o nBHF=100 for CNHF-2000×7. 

 



EXPERIMENTS:	  learning	  and	  tes/ng	  CNHF	  

CNHF and CNN evaluation 
• testing dataset: Labeled Faces in the Wild (LFW); 
• face alignment: all the LFW images are processed and normalized to 

128х128 as in 
G.-B. Huang at al., “Learning to align from scratch,” 2012; 

• verification test: accuracy by the standard LFW unrestricted with 
outside labeled data protocol and ROC; 

• identification tests: CMC and rank-1 following the methodology  
L. Best-Rowden at al., “Unconstrained face recognition: Identifying a 
person of interest from a media collection,” 2014. 

 



EXPERIMENTS:	  Hamming	  embedding*	  
                                      *CNHF degrades to CNHL 
 
Hamming embedding: CNHL vs. CNN 
 
• CNN face representation: vector of activations of 256 top hidden layer neurons; 
• СNN matching metrics: cosine similarity (CNN+CS) and L2-distance 

(CNN+L2); 
• CNHL face representations: 2000 and 200 bit-coders trained by BHF 

(CNN+BHF-2000×1 and CNN+BHF-200×1); 
• СNHL matching metrics: Hamming distance. 
 

Table 1. Verification accuracy on LFW, code size and matching speed of CNN and CNHL 

Solution Accuracy 
on LFW	  

Template 
 size 

Matches 
 in sec 

CNN+L2 0.947 8192 bit 2713222 
CNN+BHF-200×1 0.963 200 bit 194986071 
CNN+CS 0.975 8192 bit 2787632 
CNN+BHF-2000×1 0.9814 2000 bit 27855153 

 
Our	  200х1-‐bit	  face	  coder	  provides	  40-‐/mes	  smaller	  template	  size	  and	  70-‐/mes	  faster	  	  
matching	  with	  only	  1%	  decreasing	  of	  accuracy	  rela:ve	  to	  basic	  CNN	  (96.3%	  on	  LFW)!	  



EXPERIMENTS:	  Hamming	  embedding*	  
                                       *CNHF degrades to CNHL 
 
Hamming embedding: CNHL vs. CNN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results: 
• Our solution CNN+BHF-2000×1 achieves 98.14% on LFW, which outperforms 

all other solutions based on this CNN. 
• Our 25-byte solution CNN+BHF-200×1 outperforms CNN+L2. 
• Table 1 additionally demonstrates the gain in template size and matching speed. 
 



EXPERIMENTS:	  Hamming	  embedding*	   
                                  *CNHF degrades to CNHL 
Hamming embedding: Proposed BHF vs. Boosted SSC 
 
Verification: ROC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results: 
• ROC graph for CNN+BHF is monotonously better than for CNN+BoostSSC; 
 



EXPERIMENTS:	  Hamming	  embedding*	  
                                     *CNHF degrades to CNHL 
 
Hamming embedding: Proposed BHF vs. Boosted SSC 
 
Identification: CMC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results: 
• ROC graph for CNN+BHF is monotonously better than for CNN+BoostSSC; 
• CMC graphs (ranks 1-10) BHF outperforms BoostSSC (CNN+BHF-2000×1 

outperforms even CNN+CS). 
 



EXPERIMENTS:	  Hamming	  embedding*	  
                                     *CNHF degrades to CNHL 
 
Hamming embedding: Proposed BHF vs. Boosted SSC 
 
Identification: Rank-1 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results: 
• ROC graph for CNN+BHF is monotonously better than for CNN+BoostSSC; 
• CMC graphs (ranks 1-10) BHF outperforms BoostSSC (CNN+BHF-2000×1 

outperforms even CNN+CS). 
• BHF outperforms Boosted SSC in identification (rank-1) on LFW for all binary 

template sizes (outperforms even CNN+CS); 
• maximal rank-1 is 0.91 for BHF-2000×1 and 0.865 for BoostSSC-2000×1; 
 



EXPERIMENTS:	  Hashing	  Forest	  vs.	  Hashing	  Layer	  
CNHF: 7-bit trees w.r.t. 1-bit Hamming embedding and CNN 
CNHF with N output features coded each by M-bit coding trees = CNHF-N×M 
 
 
              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ROC (a) and CMC (b) curves for CNN+CS, CNHF-2000×1 and CNHF-2000×7. 
Results: 
• CNHF-2000×7 achieves 98.59% on LFW. 
• CNHF-2000×7 is 93% rank-1 on LFW relative to 89.9% rank-1 for CNN+CS. 
• CNHF-2000×7 outperforms CNHF-2000×1 and basic CNN+CS both in 

verification (ROC) and in identification (CMC). 
 

 



SUMMARY	  of	  EXPERIMENTS:	  
CNHF	  vs.	  CNHL,	  BHF	  vs.	  Bossted	  SSC,	  

CNHL	  two-‐step	  learning	  vs.	  one-‐step	  learning	  

Main	  conclusion:	  adding	  hashing	  forest	  on	  the	  top	  of	  CNN	  allows	  
both	  genera:ng	  the	  compact	  binary	  face	  representa:ons	  and	  
increasing	  the	  face	  verifica:on	  and	  especially	  iden:fica:on	  rates.	  

1)	  For	  all	  characteris/cs	  (accuracy,	  ROC,	  rank-‐1,	  CMC):	  

CNN+BHF-‐2000×7	  >	  CNN+BHF-‐2000×1	  >	  	  CNN+CS	  	  >	  	  CNN+L2	  	  
2)	  For	  all	  characteris/cs	  (accuracy,	  ROC,	  rank-‐1,	  CMC)	  and	  all	  N:	  

CNN+BHF×1	  >	  CNN+BoostedSSC	  	  
3)	  If	  accuracy	  >	  96%	  on	  LFW	  (other	  characterisMcs	  are	  unknown)	  :	  

CNN+BHF-‐200х1	  >	  CNHL-‐1000х1	  (H.	  Fan	  at	  al.,	  2014)	  
(HL	  learned	  amer	  CNN)	  is	  5	  /mes	  more	  compact	  than	  (HL+CNN	  learned	  together	  )	  	  	  

	  
	  
	  

Nota/on:	  CNHF	  with	  N	  output	  features	  coded	  each	  by	  M-‐bit	  coding	  trees	  =	  CNHF-‐NхM	  



EXPERIMENTS:	  CNHF	  performance	  w.r.t.	  depth	  of	  trees	  
ROC curves for CNHF with different depth of coding trees: 
 

 

Results: 
• performance grows with growing 

depth of trees; 
• forest with 7-bit coding trees is the 

best by ROC… 
…but 5-bit depth solution is very close. 
 
Supposed reason: 
• limited amount of training set for 

forest hashing. 
(too small number of authentic pairs in 
the each cell of space tessellation) 
 

 
        1 bit              2 bits             3 bits             4 bits… 
 
It’s a topic for further research! 
 

 



EXPERIMENTS:	  CNHL	  and	  CNHF	  vs.	  best	  methods	  on	  LFW	  
 
Verification accuracy on LFW: 
 

Method Accuracy 
WebFace [25] 0.9613 
CNHL-200×1 0.963±0.00494 
DeepFace-ensemble[21] 0.9730±0.0025 
DeepID[19] 0.9745± 0.0026 
MFM Net[24] 0.9777 
CNHL-2000×1 0.9814 
CNHF-2000×7 0.9859 
DeepID2[17] 0.9915 ± 0.0013 
DeepID3[18] 0.9953 ± 0.0010 
Baidu[11] 0.9977 ± 0.0006 

 

25	  bytes!	  

250	  bytes	  



EXPERIMENTS:	  CNHL	  and	  CNHF	  vs.	  best	  methods	  on	  LFW	  
CNHF identification results: 
• Our CNHF-2000×7 result is 0.93 rank-1 on LFW (real-time single net 

with hashing forest). 
• Best reported* DeepID3 result is 0.96 rank-1 on LFW (essentially 

deeper and slower multi-patch CNN). 
*Baidu declares even better result (0.98 rank-1 on LFW), but they use the 
training set 1.2 million images of size w.r.t. 400 thousand images in our 
case. 
 
CNHL verification results: 
• Our CNHF-2000×1 outperforms DeepFace-ensemble [30], DeepID 

[27], WebFace [35] and MFM Net [34]. 
• DeepID2 [25], DeepID3 [26] and Baidu [14] multi-patch CNNs 

outperform our CNHF-2000×1 based on single net. 
 
 
 
 
*Google’s FaceNet is formally a single net too, but it is too far 
from real-time 

Conclusion:	  Our	  real-‐:me	  CNHF-‐2000	  solu:ons	  outperforms	  
all	  single	  nets*	  and	  close	  enough	  to	  mul:-‐patch	  nets.	  



CONCLUSIONS	  
1. We develop the family of CNN-based binary face representations 
for real-time face identification: 
• Our 2000×1-bit face coder provides the compact face coding (250 byte) with 

simultaneous increasing of verification (98.14%) and identification (91% rank-1) 
on LFW.  

• Our 200×1-bit face coder provides the 40-time gain in template size and 70-time 
gain in a matching speed with 1% decreasing of verification accuracy relative to 
basic CNN (96.3% on LFW).  

• Our CNHF with 2000 output 7-bit coding trees (CNHF-2000×7) achieves 98.59% 
verification accuracy and 93% rank-1 on LFW (add 3% to rank-1 of basic CNN). 

 
2. We propose the multiple convolution deep network architecture for 
acceleration of source Max-Feature-Map (MFM) CNN architecture: 
• Our CNHF generates binary face templates at the rate of 40+ fps with 

CPU Core i7 
• Our CNHF generates binary face templates at the rate of 120+ fps with 

GPU GeForce GTX 650 



CONCLUSIONS	  
3. We propose and implement the new binary hashing technique, which 
forms the output feature space with given metric properties via joint optimization of 
face verification and identification.  
• Our Boosted Hashing Forest (BHF) technique combines the algorithmic structure 

of Boosted SSC approach and the binary code structure of forest hashing. 
• Our experiments demonstrate that BHF essentially outperforms the original 

Boosted SSC in face identification test. 
 
Ideas and plans for the future: 
• try to achieve the better recognition rates via CNHF based on multi-patch CNN, 

which we can use for non-real-time applications.  
• evolve and apply the proposed BHF technique for different data coding and 

dimension reduction problems (supervised, semi-supervised and unsupervised). 
• investigate the influence of the output metric space properties in the process of 

hashing forest learning. 
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EXPERIMENTS:	  CNHL	  and	  CNHF	  vs.	  best	  methods	  on	  LFW	  
 
CNHL: two-step vs. one-step learning 
 
• 32-bit binary face representation: 
• Best one-step result – 91% verification on LFW 

H. Fan at al., “Learning Compact Face Representation: Packing a Face into 
an int32,” 2014. 

• Our two-step learned CNHF 32×1 provides 90% only. 
 
• 96% accuracy on LFW: 
• Our two-step learned CNHF-200×1 (200 bit) hash demonstrates 

96.3% on LFW; 
• Best one-step result requires 1000 bit for achieving the 96% 

verification on LFW (our CNHF-200×1 solution improves this face 
packing result in 5 times). 

(H.	  Fan	  at	  al.,	  2014)	  

For	  possible	  quesMons	  


