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Capacitated Vehicle Routing Problem (CVRP) ::
Motivation

Practical applications

See, e.g. [Vehicle Routing. Problems, Methods and Applications
(Toth, Vigo. 2014)].

The spheres of applications

Oil, gas and fuel transportation

Retail applications

Waste collection and management

Mail and Small package delivery

Food distribution



Capacitated Vehicle Routing Problem (CVRP) ::
Problem statement

CVRP

Instance:

a complete edge-weighted digraph G = (X ∪ {y}, E, w)

each customer xi has a unit demand

each vehicle has the same capacity q

any feasible route has the form

R = y, xi1 , . . . , xis , y, where s ≤ q

and the cost w(R) = w(y, xi1) + w(xi1 , xi2) + . . .+ w(xis , y)

Goal: to find a collection S = {R1, . . . , Rb} of feasible routes visiting
each customer exactly once and having the minimum total cost
w(S) =

∑b
j=1 w(Rj)



Capacitated Vehicle Routing Problem with Time
Windows and splittable demand (CVRPTW-SD) ::
Problem statement

CVRPTW-SD

Instance:

a complete edge-weighted digraph G = (X ∪ {y}, E, w)

a set T = {t1, . . . , tp} of mutually disjoint time windows, wlog. ti � tj for
any i ≤ j

each vehicle has the same capacity q

each customer xi has a splittable demand d(xi) and should be visited at time
window T (xi) ∈ T



Capacitated Vehicle Routing Problem with Time
Windows with splittable demand(CVRPTW-SD) ::
Problem statement

CVRPTW-SD

Instance (ctd):

A feasible route is an ordered pair Rj = (Rj , Dj), where
Rj = y, xi1 , . . . , xis , y is a closed tour in the graph G and the n-tuple
Dj = (d1j , . . . , dnj) fulfills the time windows

T (xil ) � T (xil+1
), (1 ≤ l < s)

and capacity
1 ≤ dilj ≤ dil , (1 ≤ l ≤ s)

dij = 0, i 6∈ {i1, . . . , is}
n∑

i=1

dij ≤ q

constraints, where dij is a part of the i customer covered by Rj .
The transportation cost is w(Rj) = w(y, xi1 ) + w(xi1 , xi2 ) + . . . + w(xis , y)



Capacitated Vehicle Routing Problem with Time
Windows with splittable demand(CVRPTW-SD) ::
Problem statement

CVRPTW-SD

Goal: to find, for some m ≥ 1, a minimum cost multi-cover U = (R1, . . . ,Rm) of
the graph G, satisfying the total customer demand, i.e.

m∑
j=1

dij = di, (1 ≤ i ≤ n).



CVRP and CVRPTW-SD Related work

CVRP

(G.Dantzig and J.Ramser, 1959) Introduced the CVRP problem

(M.Haimovich and A.Rinooy Kan, 1985) First PTAS algorithm for
q = o(log logn)

(T.Asano et.al, 1996) Improving PTAS algorithm for q = O(logn/ log logn)

(C.Adamaszek, and A.Czumaj, and A.Lingas, 2009) PTAS for k-tour cover
problem on the plane for moderately large values of k

(A.Das and C.Mathieu, 2015) Quasi-Polynomial Time Approximation

Scheme (QPTAS) for the Euclidean plane with time complexity nlognO(1/ε)

(M.Khachay and R.Dubinin, 2016) First EPTAS for the CVRP in the
Euclidean space of an arbitrary dimension d > 1



CVRP and CVRPTW-SD Related work

CVRPTW

(P.Toth and D.Vigo, 2014) Many efficient branch-and-cut methods and
numerous heuristics

(L.Song and H.Huang and H.Du, 2016) Extending QPTAS for CVRP to the
case of finite number of non-intersecting time-windows with time complexity

nlogO(1/ε) n

(M.Khachay, and Y. Ogorodnikov, 2018) Efficient PTAS for the Euclidean
CVRP with Time Windows

(M.Khachay, and Y. Ogorodnikov, 2018) Improved Polynomial Time
Approximation Scheme for Capacitated Vehicle Routing Problem with Time
Windows



Approximation schemes :: possible time complexities

(i) QPTAS: O
(
npoly(logn)

O(1/ε)
)

(ii) PTAS: O
(
nexp(

1
ε3

)
)

(iii) EPTAS: O

(
expexp

1
ε4 ·n3

)
, O
(
n3 + exp1/ε4

)
(iv) FPTAS: O

((
1
ε

)10 · n15) = poly
(
n, 1ε

)



CVRPTW-SD:: Our approximation scheme

The goal and main idea

Our goal: to develop a PTAS algorithm for the CVRPTW-SD on the Euclidean
plane with w(xi, xj) = ‖xi − xj‖2
Our approach: combines

the approach proposed by C.Adamaszek et al for the Euclidean CVRP

QPTAS proposed by L.Song at el. for the Euclidean CVRPTW



CVRPTW-SD:: Our approximation scheme

The goal and main idea

Our goal: to develop a PTAS algorithm for the CVRPTW-SD on the Euclidean
plane with w(xi, xj) = ‖xi − xj‖2
Our approach: combines

the approach proposed by C.Adamaszek et al for the Euclidean CVRP

QPTAS proposed by L.Song at el. for the Euclidean CVRPTW

The scheme :: main stages

Preprocessing.

Rounding.

Instance decomposition onto white and gray subinstances.

Blackboxing: applying Song’s QPTAS for any white subinstance and the ITP
heuristic for the grey ones.



Approximation scheme :: preliminaries

Lemma 1

For any instance of the CV RPTW -SD, such that r1 ≥ . . . ≥ rn,
ri = min{w(y, xi) : y ∈ Y }, the following equation

OPT ≥ max

{
TSP∗(X ∪ {y}), 2r1,

2

q

n∑
i=1

diri

}

is valid.

Lemma 2

Demand of all customers, for which ri ≤ ρ, can be serviced by routes
of at most ε ·OPT total cost.

Lemma 3

w(SITP ) ≤ 2 ·

(
2

q

n∑
i=1

diri

)
+pw(H) ≤ 2 ·

(
2

q

n∑
i=1

diri

)
+pβ ·TSP∗(X).

Trivial and non-trivial routes

We call a feasible route R non-trivial, if it visits at least two distinct
customers, i.e. |X(R)| > 1. Otherwise, the route is called trivial.

Lemma 4 [Adamaszek, etc., 2009]

For any instance of the CVRP, there exists an optimum solution
S = {R1, . . . ,Rm}, such that, among its m routes, at most |X| are
non-trivial.

Lemma 5

For any instance of the CVRPTW-SD, there exists an optimum
solution S = {R1, . . . ,Rm} having at most T non-trivial routes,
where T is the number of slots.
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⌉
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Approximation scheme

Preprocessing

Relabel the customers in the order r1 ≥ r2 ≥ . . . ≥ rn, where
ri = w(y, xi). Then, given an ε > 0, we set a tolerance threshold

ρ =
r1ε

N
, where N =

n∑
i=1

⌈
di
q

⌉
,

and exclude all the customers xi, for which ri ≤ ρ.

Rounding

We introduce the accuracy dependent grid induced by the circles
centered at the depot y of radii

ρi = ρ

(
1 +

ε

q

)i
, 0 ≤ i ≤ dlog1+ ε

q
N/εe

Divide circles into sectors of d 2πqε e angle, and move clients to the
nearest location. We call locations the obtained intersection points
between rays and circles. To any location, we assign p slots.

The total number of slots:
Θ
(
p ·
(
q
ε

)2
log N

ε

)

Lemma 6

The proposed reduction changes the cost of any solution by at most
ε ·OPT.

Sketch of the proof

It is easy to verify, that

‖x−l‖2 ≤ p1+p2 ≤ r(x)α/2+(ρi+1−ρi)/2.

Therefore, ‖x− l‖2 ≤ r(x) εq . It can be
seen, that the total change of routes does
not exceed

ε · 2

q

n∑
i=1

diri ≤ ε ·OPT,

by Lemma 1.
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Instance decomposition

Instance partition to rings

(i) Partition the enclosing disk (of radius r1) to rings, such that each
ring (except maybe the most inner one) consists of
k = dlog1+ ε

q

5
εe consecutive circles

(ii) For the positive integer a = d(20pβ + 4)/εe and some number
b ∈ {0, . . . , a− 1}, starting from the outer one, color all the rings
obtained in white and gray, such that the ring Ki is colored gray,
if i ≡ b (mod a).



Instance decomposition

Ring width :: lower bound

For any ring K, rout = rin(1 + ε/q)k, where k = dlog1+ ε
q

5
εe.

Then, for its width W (K),

W (K) = rin

((
1 +

ε

q

)k
− 1

)
≥ rin

((
1 +

ε

q

)log1+ ε
q

5
ε

− 1

)

= rin

(
5

ε
− 1

)
≥ 2rin

2

ε
,

i.e.
2rin ≤

ε

2
·W (K)



Instance decomposition

White families

By F1, . . . ,Fα and OPT(Fi) we denote the maximal (by inclusion)
families of white consecutive rings and the optimum value of the
CVRPTW-SD subinstance induced by slots located in rings of the
family Fi, respectively.



Instance decomposition

White families

By F1, . . . ,Fα and OPT(Fi) we denote the maximal (by inclusion)
families of white consecutive rings and the optimum value of the
CVRPTW-SD subinstance induced by slots located in rings of the
family Fi, respectively.

Lemma 7

For any white-gray coloring of rings obtained by the following rules:

(i) any monochromatic pair of the adjacent rings is white,

(ii) the outer ring is white as well,

the following equation

α∑
i=1

OPT(Fi) ≤
(

1 +
ε

2

)
OPT

is valid.



Instance decomposition

Inspired by paper Baker, B.S.: Approximation algorithms for
NP-complete problems on planar graphs. Journal of the
ACM 41(1), 153180 (1994)

Let U = {R1, . . .Rm} be an arbitrary optimum solution of the initial
rounded instance of the CVRPTW-SD.



Instance decomposition

Take any route R from the
solution U and shortcut
onto
Rg(1),Rg(2), . . . ,Rg(l)
subroutes

Sketch of the proof

(i) Transformation results by the one step for the single route is
increasing of the transportation cost by at most
4 · rin · l ≤ 2l · ε/2 ·W (K) ≤ ε/2 · w(R∩K)

(ii) The total cost increasing caused by such a transformation for the
single route R does not exceed ε

2 ·
∑α
j=1 w(R∩Kj),

(iii) The total cost of the obtained routes is at most
w(U) + ε

2

∑m
i=1

∑α
j=1 w(Ri ∩Kj) ≤ (1 + ε/2)w(U).



Instance decomposition

Lemma 8

Let K1, . . . ,Kα be the gray rings. Then,

α∑
i=1

TSP∗(Ki) ≤ (1 + πε) TSP∗.
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Instance decomposition

Lemma 8

Let K1, . . . ,Kα be the gray rings. Then,

α∑
i=1

TSP∗(Ki) ≤ (1 + πε) TSP∗.



Instance decomposition

Sketch of the proof of Lemma 8

(i) The upper bound for the cost w(H(K)) of the constructed cycle
H(K)

w(H(K)) ≤ w(E(K)) ≤ wext(K) + 4π · rin
≤ wext(K) + πε ·W (K) ≤ wext(K) + πε · w(H ∩K),

(ii) The final bound for the all gray rings

α∑
i=1

TSP∗(Ki) ≤
α∑
i=1

w(H(Ki)) ≤ (1 + πε) TSP∗.



Instance decomposition

N.B.

Lemma 8 is valid for an arbitrary white-gray coloring. In particular,
for the case, when each family F contains only a single ring

Lemma 9

Let TSP∗(Ki) be the optimum value for the Euclidean TSP instance
enclosed in the ring Ki. Then, the following equation holds:∑

i=1

TSP∗(Ki) ≤ 10 · TSP∗.



Instance decomposition

Lemma 9

Let TSP∗(Ki) be the optimum value for the Euclidean TSP instance
enclosed in the ring Ki. Then, the following equation holds:∑

i=1

TSP∗(Ki) ≤ 10 · TSP∗.

Sketch of the proof of Lemma 9

We obtain the following equation for two alternative colorings

k∑
i=1

TSP∗(Ki) =
∑

i≡0 ( mod 2)

TSP∗(Ki) +
∑

i≡1 ( mod 2)

TSP∗(Ki)

≤ 2 (1 + πε) TSP∗+TSP∗(K1) ≤ 2 (1 + πε) TSP∗+TSP∗ ≤ 10·TSP∗,

since ε < 1.



Instance decomposition

Lemma 10. Total cost of the ITP solutions

There exists a number b ∈ {1, . . . , a}, such that the total cost of all
ITP solutions for the subinstances enclosed in the gray rings is at
most ε

2 ·OPT.



Instance decomposition

Lemma 10. Total cost of the ITP solutions

There exists a number b ∈ {1, . . . , a}, such that the total cost of all
ITP solutions for the subinstances enclosed in the gray rings is at
most ε

2 ·OPT.

Sketch of the proof of Lemma 10

Indeed,

w(SITP(K)) ≤ 2 · 2

q

∑
x∈Xslots(K)

d(x)r(x) + pβ · TSP∗(K)



Instance decomposition

Lemma 10. Total cost of the ITP solutions

There exists a number b ∈ {1, . . . , a}, such that the total cost of all
ITP solutions for the subinstances enclosed in the gray rings is at
most ε

2 ·OPT.

Sketch of the proof of Lemma 10

Therefore, by Lemmas 2, 9, 1

a−1∑
b=0

∑
i≡b ( mod a)

w(SITP(Ki)) ≤ 2·2
q

∑
x∈SK

d(x)r(x)+pβ·
k∑
i=1

TSP∗(Ki)

≤ 2 ·OPT + 10pβ · TSP∗ ≤ (2 + 10pβ)OPT.

Hence, there exists b, such that∑
i≡b ( mod a)

w(SITP(Ki)) ≤
2 + 10pβ

a
OPT ≤ ε

2
OPT.



Main Result and blackboxing

From Lemmas 7 and 10 we have

Theorem 1

For any ε ∈ (0, 1), the proposed decomposition provides
(1 + ε)-approximate solution for the initial rounded CVRPTW-SD
instance.



Main Result and blackboxing

From Lemmas 7 and 10 we have

Theorem 1

For any ε ∈ (0, 1), the proposed decomposition provides
(1 + ε)-approximate solution for the initial rounded CVRPTW-SD
instance.

Blackboxing

(i) For the white subinstances we will use Song’s QPTAS [Song,
2016]

(ii) For the gray subinstances we will use the ITP heuristic



Time complexity bounds

Theorem 2

Time complexity of the proposed scheme is

O (I · K(p, q, ε) + n log n) ,

where

I = O

(
ε

p

log N
ε

log 1
ε

)
, here N =

n∑
i=1

⌈
di
q

⌉
and

K(p, q, ε) =
(
σ2
wq
)(log(σ2

wq))
O(1/ε)

+ (σ2
gq)

3,

and

σw = O

(
(pq)2

ε3
· log

1

ε

)
,

and

σg = O

(
pq2

ε2
· log

1

ε

)



Time complexity bounds

Corollary 1

For any fixed ε ∈ (0, 1), the running time of the proposed scheme does
not exceed O(n logN), if p = Ω(1), q = Ω(1), and

max{p, q} ≤ 2log
δ n

for some δ = O(ε).



Time complexity bounds

Corollary 1

For any fixed ε ∈ (0, 1), the running time of the proposed scheme does
not exceed O(n logN), if p = Ω(1), q = Ω(1), and

max{p, q} ≤ 2log
δ n

for some δ = O(ε).

Corollary 2

For any fixed p and q the proposed scheme is EPTAS with time

complexity O

((
1
ε8

)(log 1
ε )
O(1/ε)

· logN + n log n

)
.



Conclusion and future work

Conclusion

(i) Perhaps, first approximation scheme for CVRP with time
windows and splittable demand

(ii) For any fixed ε ∈ (0, 1) and the total customer demand D, the
scheme finds a (1 + ε)-approximate solution of the problem in

time O(n logD) any time, when max{p, q} ≤ 2log
δ n for some

δ = O(ε)

(iii) for any fixed capacity q and the number p of time windows, the
proposed scheme is EPTAS

Future work

(i) Extension to an arbitrary finite dimension of Euclidean space

(ii) Extension for the non-splittable demand



Thank you for your attention!


