Deep Learning Concepts

Sergey Ivanov (617)
qbrick@mail.ru

September 16, 2019

1 Backpropagation

- Putting some pieces together
- Vector differentiation
- Backpropagation

Backpropagation

Putting some pieces together

Motivation to discuss again

- to have another view on vector differentiation
- to draw some connections between different subjects
- highlight theory we (implicitly?) utilize

Motivation to discuss again

- to have another view on vector differentiation
- to draw some connections between different subjects
- highlight theory we (implicitly?) utilize

Motivation to discuss again

- to have another view on vector differentiation
- to draw some connections between different subjects
- highlight theory we (implicitly?) utilize

Finite vector spaces

Theorem

All n-dimensional vector spaces ${ }^{1}$ are isomorphic

${ }^{1}$ over same field (in our case $-\mathbb{R}$)

Key task!

$$
\begin{gathered}
f(x): \mathbb{R}^{n} \rightarrow \mathbb{R} \\
f(x) \rightarrow \min _{x}
\end{gathered}
$$

Key task!

$$
\begin{gathered}
f(x): \mathbb{R}^{n} \rightarrow \mathbb{R} \\
f(x) \rightarrow \min _{x}
\end{gathered}
$$

Alternative view:

How can we for some x_{0} find x so that $f(x)<f\left(x_{0}\right)$?

Key task!

$$
\begin{gathered}
f(x): \mathbb{R}^{n} \rightarrow \mathbb{R} \\
f(x) \rightarrow \min _{x}
\end{gathered}
$$

Alternative view:

How can we for some x_{0} find x so that $f(x)<f\left(x_{0}\right)$?

Optimization step concept

Idea:

Let $f(x)=g(x)+h(x)$, where:

- $g(x)$ is something simple that can be easily optimized
- $h(x)$ is something that we can neglect

Optimization step concept

Idea:

Let $f(x)=g(x)+h(x)$, where:

- $g(x)$ is something simple that can be easily optimized
- $h(x)$ is something that we can neglect

What simple class of functions $g(x)$ to consider?
(a) $g(x+y)=g(x)+g(y) \quad \forall x, y \in \mathbb{R}^{n}$

Optimization step concept

Idea:

Let $f(x)=g(x)+h(x)$, where:

- $g(x)$ is something simple that can be easily optimized
- $h(x)$ is something that we can neglect

What simple class of functions $g(x)$ to consider?
(a) $g(x+y)=g(x)+g(y) \quad \forall x, y \in \mathbb{R}^{n}$
x some are discontinuous

Optimization step concept

Idea:

Let $f(x)=g(x)+h(x)$, where:

- $g(x)$ is something simple that can be easily optimized
- $h(x)$ is something that we can neglect

What simple class of functions $g(x)$ to consider?
(a) $g(x+y)=g(x)+g(y) \quad \forall x, y \in \mathbb{R}^{n}$
x some are discontinuous
(b) $g(\alpha x)=\alpha g(x) \quad \forall \alpha \in \mathbb{R}, \forall x \in \mathbb{R}^{n}$

Optimization step concept

Idea:

Let $f(x)=g(x)+h(x)$, where:

- $g(x)$ is something simple that can be easily optimized
- $h(x)$ is something that we can neglect

What simple class of functions $g(x)$ to consider?
(a) $g(x+y)=g(x)+g(y) \quad \forall x, y \in \mathbb{R}^{n}$
\times some are discontinuous
(b) $g(\alpha x)=\alpha g(x) \quad \forall \alpha \in \mathbb{R}, \forall x \in \mathbb{R}^{n}$
x some are discontinuous $(n>1)$

Optimization step concept

Idea:

Let $f(x)=g(x)+h(x)$, where:

- $g(x)$ is something simple that can be easily optimized
- $h(x)$ is something that we can neglect

What simple class of functions $g(x)$ to consider?
(a) $g(x+y)=g(x)+g(y) \quad \forall x, y \in \mathbb{R}^{n}$
\times some are discontinuous
(b) $g(\alpha x)=\alpha g(x) \quad \forall \alpha \in \mathbb{R}, \forall x \in \mathbb{R}^{n}$
x some are discontinuous $(n>1)$
Consider (a) $+(\mathrm{b})$ and everything will work out!

Linear functions

$$
\begin{gathered}
g: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
g(x+y)=g(x)+g(y) \\
g(\alpha x)=\alpha g(x)
\end{gathered}
$$

Question: How this class of functions can be described?

Linear functions

$$
\begin{gathered}
g: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
g(x+y)=g(x)+g(y) \\
g(\alpha x)=\alpha g(x)
\end{gathered}
$$

Question: How this class of functions can be described?

- $n=1$:

Linear functions

$$
\begin{gathered}
g: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
g(x+y)=g(x)+g(y) \\
g(\alpha x)=\alpha g(x)
\end{gathered}
$$

Question: How this class of functions can be described?
■ $n=1: g(x)=k x$ for some $k \in \mathbb{R}$

Linear functions

$$
\begin{gathered}
g: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
g(x+y)=g(x)+g(y) \\
g(\alpha x)=\alpha g(x)
\end{gathered}
$$

Question: How this class of functions can be described?

- $n=1: g(x)=k x$ for some $k \in \mathbb{R}$
- Proof: $g(x)=g(x \cdot 1)=x g(1)=\{k:=g(1)\}=k x$

Linear functions

$$
\begin{gathered}
g: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
g(x+y)=g(x)+g(y) \\
g(\alpha x)=\alpha g(x)
\end{gathered}
$$

Question: How this class of functions can be described?
$\square n=1: g(x)=k x$ for some $k \in \mathbb{R}$
■ Proof: $g(x)=g(x \cdot 1)=x g(1)=\{k:=g(1)\}=k x$
■ $n \geq 1$:

Linear functions

$$
\begin{gathered}
g: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
g(x+y)=g(x)+g(y) \\
g(\alpha x)=\alpha g(x)
\end{gathered}
$$

Question: How this class of functions can be described?
$\square n=1: g(x)=k x$ for some $k \in \mathbb{R}$
■ Proof: $g(x)=g(x \cdot 1)=x g(1)=\{k:=g(1)\}=k x$

- $n \geq 1$: Riesz Representation Theorem

Riesz Representation Theorem

Riesz Theorem ${ }^{2}$ (for finite vector spaces)

Every linear function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be represented as $g(x)=\sum_{i}^{n} x_{i} y_{i}$ for some $y \in \mathbb{R}^{n}$
${ }^{2}$ proof is relatively simple

Riesz Representation Theorem

Riesz Theorem ${ }^{2}$ (for finite vector spaces)

Every linear function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be represented as $g(x)=\sum_{i}^{n} x_{i} y_{i}$ for some $y \in \mathbb{R}^{n}$
${ }^{2}$ proof is relatively simple

Riesz Representation Theorem

Riesz Theorem ${ }^{2}$ (for finite vector spaces)

Every linear function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be represented as $g(x)=\sum_{i}^{n} x_{i} y_{i}$ for some $y \in \mathbb{R}^{n}$

${ }^{2}$ proof is relatively simple

Linearization

Let $x_{0} \in \mathbb{R}^{n}$ be given point.

$$
\underbrace{f(x)-f\left(x_{0}\right)}_{\text {change in function }}=\underbrace{g\left(x-x_{0}\right)}_{\begin{array}{c}
\text { linear part } \\
\text { (differential) }
\end{array}}+\underbrace{h\left(x-x_{0}\right)}_{\begin{array}{c}
\text { approximation } \\
\text { error }
\end{array}}
$$

Linearization

Let $x_{0} \in \mathbb{R}^{n}$ be given point.

$$
\underbrace{f(x)-f\left(x_{0}\right)}_{\text {change in function }}=\underbrace{g\left(x-x_{0}\right)}_{\begin{array}{c}
\text { linear part } \\
\text { (differential) }
\end{array}}+\underbrace{h\left(x-x_{0}\right)}_{\begin{array}{c}
\text { approximation } \\
\text { error }
\end{array}}
$$

Linearization

Let $x_{0} \in \mathbb{R}^{n}$ be given point.

$$
\underbrace{f(x)-f\left(x_{0}\right)}_{\text {change in function }}=\underbrace{g\left(x-x_{0}\right)}_{\begin{array}{c}
\text { linear part } \\
\text { (differential) }
\end{array}}+\underbrace{h\left(x-x_{0}\right)}_{\begin{array}{c}
\text { approximation } \\
\text { error }
\end{array}}
$$

Linearization

Let $x_{0} \in \mathbb{R}^{n}$ be given point.

$$
\underbrace{f(x)-f\left(x_{0}\right)}_{\text {change in function }}=\underbrace{g\left(x-x_{0}\right)}_{\begin{array}{c}
\text { linear part } \\
\text { (differential) }
\end{array}}+\underbrace{h\left(x-x_{0}\right)}_{\begin{array}{c}
\text { approximation } \\
\text { error }
\end{array}}
$$

Using Riesz theorem:

for some $\nabla f \in \mathbb{R}^{n}$ called gradient:

$$
g\left(x-x_{0}\right)=\left\langle x-x_{0}, \nabla f\right\rangle
$$

Descent

For some class of functions f («differentiable») we can say something about approximation error $h\left(x-x_{0}\right)$.

Descent

For some class of functions f («differentiable») we can say something about approximation error $h\left(x-x_{0}\right)$.

Consider some direction $x=x_{0}+\alpha d, \alpha \in \mathbb{R}, d \in \mathbb{R}^{n}$:

$$
f\left(x_{0}+\alpha d\right)-f\left(x_{0}\right)=\alpha\langle d, \nabla f\rangle+h(\alpha d)
$$

Descent

For some class of functions f («differentiable») we can say something about approximation error $h\left(x-x_{0}\right)$.

Consider some direction $x=x_{0}+\alpha d, \alpha \in \mathbb{R}, d \in \mathbb{R}^{n}$:

$$
f\left(x_{0}+\alpha d\right)-f\left(x_{0}\right)=\alpha\langle d, \nabla f\rangle+h(\alpha d)
$$

Using some 1d calculus:

$$
\lim _{\alpha \rightarrow 0} \frac{\alpha\langle d, \nabla f\rangle+h(\alpha d)}{\alpha}=\langle d, \nabla f\rangle+\lim _{\alpha \rightarrow 0} \frac{h(\alpha d)}{\alpha}
$$

Descent

For some class of functions f («differentiable») we can say something about approximation error $h\left(x-x_{0}\right)$.

Consider some direction $x=x_{0}+\alpha d, \alpha \in \mathbb{R}, d \in \mathbb{R}^{n}$:

$$
f\left(x_{0}+\alpha d\right)-f\left(x_{0}\right)=\alpha\langle d, \nabla f\rangle+h(\alpha d)
$$

Using some 1d calculus:

$$
\begin{aligned}
& \lim _{\alpha \rightarrow 0} \frac{\alpha\langle d, \nabla f\rangle+h(\alpha d)}{\alpha}=\langle d, \nabla f\rangle+\lim _{\alpha \rightarrow 0} \frac{h(\alpha d)}{\alpha}= \\
& =\{1 d \text { Taylor theorem }\}=\langle d, \nabla f\rangle+0=\langle d, \nabla f\rangle
\end{aligned}
$$

Descent

For some class of functions f («differentiable») we can say something about approximation error $h\left(x-x_{0}\right)$.

Consider some direction $x=x_{0}+\alpha d, \alpha \in \mathbb{R}, d \in \mathbb{R}^{n}$:

$$
f\left(x_{0}+\alpha d\right)-f\left(x_{0}\right)=\alpha\langle d, \nabla f\rangle+h(\alpha d)
$$

Using some 1d calculus:

$$
\begin{aligned}
& \lim _{\alpha \rightarrow 0} \frac{\alpha\langle d, \nabla f\rangle+h(\alpha d)}{\alpha}=\langle d, \nabla f\rangle+\lim _{\alpha \rightarrow 0} \frac{h(\alpha d)}{\alpha}= \\
& =\{1 d \text { Taylor theorem }\}=\langle d, \nabla f\rangle+0=\langle d, \nabla f\rangle
\end{aligned}
$$

$$
\begin{gathered}
\text { if }\langle d, \nabla f\rangle<0 \text {, there is } \alpha>0 \text { : } \\
f\left(x_{0}+\alpha d\right)-f\left(x_{0}\right)<0
\end{gathered}
$$

Gradient Descent

How to choose direction d ?

$$
\left\{\begin{array}{l}
g\left(x-x_{0}\right) \rightarrow \min _{x} \\
\rho\left(x, x_{0}\right) \leq \varepsilon
\end{array}\right.
$$

Gradient Descent

How to choose direction d ?

$$
\left\{\begin{array}{l}
g\left(x-x_{0}\right) \rightarrow \min _{x} \\
\rho\left(x, x_{0}\right) \leq \varepsilon \quad \Leftarrow \text { intuition: «trust region» }
\end{array}\right.
$$

Gradient Descent

How to choose direction d ?

$$
\left\{\begin{array}{l}
g\left(x-x_{0}\right) \rightarrow \min _{x} \\
\rho\left(x, x_{0}\right) \leq \varepsilon \quad \Leftarrow \text { intuition: «trust region» }
\end{array}\right.
$$

Standard choice of $\rho: \rho\left(x, x_{0}\right):=\sqrt{\left\langle x-x_{0}, x-x_{0}\right\rangle}$

Gradient Descent

How to choose direction d ?

$$
\left\{\begin{array}{l}
g\left(x-x_{0}\right) \rightarrow \min _{x} \\
\rho\left(x, x_{0}\right) \leq \varepsilon \quad \Leftarrow \text { intuition: «trust region» }
\end{array}\right.
$$

Standard choice of $\rho: \rho\left(x, x_{0}\right):=\sqrt{\left\langle x-x_{0}, x-x_{0}\right\rangle}$
Solution: $x-x_{0} \propto-\nabla f$

Generalization

Consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Generalization

Consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

$$
\left\{\begin{array}{l}
f_{1}(x)-f_{1}\left(x_{0}\right)=g_{1}\left(x-x_{0}\right)+h_{1}\left(x-x_{0}\right) \\
f_{2}(x)-f_{2}\left(x_{0}\right)=g_{2}\left(x-x_{0}\right)+h_{2}\left(x-x_{0}\right) \\
\vdots \\
f_{m}(x)-f_{m}\left(x_{0}\right)=g_{m}\left(x-x_{0}\right)+h_{m}\left(x-x_{0}\right)
\end{array}\right.
$$

where all g_{i} are linear.

Generalization

Consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

$$
\left\{\begin{array}{l}
f_{1}(x)-f_{1}\left(x_{0}\right)=g_{1}\left(x-x_{0}\right)+h_{1}\left(x-x_{0}\right) \\
f_{2}(x)-f_{2}\left(x_{0}\right)=g_{2}\left(x-x_{0}\right)+h_{2}\left(x-x_{0}\right) \\
\vdots \\
f_{m}(x)-f_{m}\left(x_{0}\right)=g_{m}\left(x-x_{0}\right)+h_{m}\left(x-x_{0}\right)
\end{array}\right.
$$

where all g_{i} are linear.
Just m different functions $\mathbb{R}^{n} \rightarrow \mathbb{R}$!

Generalization

Consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

$$
\left\{\begin{array}{l}
f_{1}(x)-f_{1}\left(x_{0}\right)=\left\langle x-x_{0}, \nabla f_{1}\right\rangle+h_{1}\left(x-x_{0}\right) \\
f_{2}(x)-f_{2}\left(x_{0}\right)=\left\langle x-x_{0}, \nabla f_{2}\right\rangle+h_{2}\left(x-x_{0}\right) \\
\vdots \\
f_{m}(x)-f_{m}\left(x_{0}\right)=\left\langle x-x_{0}, \nabla f_{m}\right\rangle+h_{m}\left(x-x_{0}\right)
\end{array}\right.
$$

where all g_{i} are linear.

Just m different functions $\mathbb{R}^{n} \rightarrow \mathbb{R}$!

Generalization

Consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

$$
\left\{\begin{array}{l}
f_{1}(x)-f_{1}\left(x_{0}\right)=\left\langle x-x_{0}, \nabla f_{1}\right\rangle+h_{1}\left(x-x_{0}\right) \\
f_{2}(x)-f_{2}\left(x_{0}\right)=\left\langle x-x_{0}, \nabla f_{2}\right\rangle+h_{2}\left(x-x_{0}\right) \\
\vdots \\
f_{m}(x)-f_{m}\left(x_{0}\right)=\left\langle x-x_{0}, \nabla f_{m}\right\rangle+h_{m}\left(x-x_{0}\right)
\end{array}\right.
$$

where all g_{i} are linear.
Just m different functions $\mathbb{R}^{n} \rightarrow \mathbb{R}$!

Corollary

All linear functions $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are

$$
g(x)=A x
$$

Jacobian

Define by $\nabla f \in \mathbb{R}^{m \times n}$ a matrix of component gradients:

$$
f(x)-f\left(x_{0}\right)=\underbrace{\nabla f \cdot\left(x-x_{0}\right)}_{\begin{array}{c}
D\left[x-x_{0}\right] \\
\text { differential }
\end{array}}+h\left(x-x_{0}\right)
$$

Jacobian

Define by $\nabla f \in \mathbb{R}^{m \times n}$ a matrix of component gradients:

$$
f(x)-f\left(x_{0}\right)=\underbrace{\nabla f \cdot\left(x-x_{0}\right)}_{\begin{array}{c}
D f\left[x-x_{0}\right] \\
\text { differential }
\end{array}}+h\left(x-x_{0}\right)
$$

Jacobian

Define by $\nabla f \in \mathbb{R}^{m \times n}$ a matrix of component gradients:

$$
f(x)-f\left(x_{0}\right)=\underbrace{\nabla f \cdot\left(x-x_{0}\right)}_{\begin{array}{c}
D f\left[x-x_{0}\right] \\
\text { differential }
\end{array}}+h\left(x-x_{0}\right)
$$

Jacobian

Define by $\nabla f \in \mathbb{R}^{m \times n}$ a matrix of component gradients:

$$
f(x)-f\left(x_{0}\right)=\underbrace{\nabla f \cdot\left(x-x_{0}\right)}_{\begin{array}{c}
D f\left[x-x_{0}\right] \\
\text { differential }
\end{array}}+h\left(x-x_{0}\right)
$$

Jacobian

Define by $\nabla f \in \mathbb{R}^{m \times n}$ a matrix of component gradients:

$$
f(x)-f\left(x_{0}\right)=\underbrace{\nabla f \cdot\left(x-x_{0}\right)}_{\begin{array}{c}
D f\left[x-x_{0}\right] \\
\text { differential }
\end{array}}+h\left(x-x_{0}\right)
$$

Comparing jacobian and differential

	jacobian	differential
Dimensions	$m \times n$	m
Depends on	x_{0}	$x_{0}, x-x_{0}$

Comparing jacobian and differential

	jacobian	differential
Dimensions	$m \times n$	m
Depends on	x_{0}	$x_{0}, x-x_{0}$

Question: what to do if argument or value of function is matrix?

Comparing jacobian and differential

	jacobian	differential
Dimensions	$m \times n$	m
Depends on	x_{0}	$x_{0}, x-x_{0}$

Question: what to do if argument or value of function is matrix?

$$
\mathbb{R}^{n \times m} \cong \mathbb{R}^{n m}
$$

Comparing jacobian and differential

	jacobian	differential
Dimensions	$m \times n$	m
Depends on	x_{0}	$x_{0}, x-x_{0}$

Question: what to do if argument or value of function is matrix?

$$
\mathbb{R}^{n \times m} \cong \mathbb{R}^{n m}
$$

Corollary
Let $A, B \in \mathbb{R}^{n \times m}$
$\langle A, B\rangle_{\mathbb{R}^{n \times m}}=\langle A \text {.flatten(), B.flatten() }\rangle_{\mathbb{R}^{n m}}$

Comparing jacobian and differential

	jacobian	differential
Dimensions	$m \times n$	m
Depends on	x_{0}	$x_{0}, x-x_{0}$

Question: what to do if argument or value of function is matrix?

$$
\mathbb{R}^{n \times m} \cong \mathbb{R}^{n m}
$$

Corollary
Let $A, B \in \mathbb{R}^{n \times m}$
$\langle A, B\rangle_{\mathbb{R}^{n \times m}}=\langle A$.flatten($), B$.flatten ()$\rangle_{\mathbb{R}^{n m}}=\operatorname{tr}\left(B^{T} A\right)$

Backpropagation

Vector differentiation

Constructing complex functions

Questions:

what functions $\mathbb{R}^{n} \rightarrow \mathbb{R}$ do we know?

Constructing complex functions

Questions:

- what functions $\mathbb{R}^{n} \rightarrow \mathbb{R}$ do we know?
- how to automatically calculate their gradient?

Constructing complex functions

Questions:

- what functions $\mathbb{R}^{n} \rightarrow \mathbb{R}$ do we know?
- how to automatically calculate their gradient?

1 find some primitive building blocks $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

Constructing complex functions

Questions:

- what functions $\mathbb{R}^{n} \rightarrow \mathbb{R}$ do we know?
- how to automatically calculate their gradient?

1 find some primitive building blocks $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
$\boxed{2}$ find their jacobians/differentials analytically.

Constructing complex functions

Questions:

- what functions $\mathbb{R}^{n} \rightarrow \mathbb{R}$ do we know?
- how to automatically calculate their gradient?

1 find some primitive building blocks $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
$\boxed{2}$ find their jacobians/differentials analytically.
3 construct complex functions using composition

Constructing complex functions

Questions:

- what functions $\mathbb{R}^{n} \rightarrow \mathbb{R}$ do we know?
- how to automatically calculate their gradient?

1 find some primitive building blocks $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
$\boxed{2}$ find their jacobians/differentials analytically.
3 construct complex functions using composition
4 apply chain rule!

Building blocks

Let $x, y \in \mathbb{R}^{n}$ be input vector.

- element-wise application ("map") of some scalar function.

■ examples: $e^{x}, x^{2}, x+1, \frac{1}{x} \ldots$

Building blocks

Let $x, y \in \mathbb{R}^{n}$ be input vector.

- element-wise application ("map") of some scalar function.

■ examples: $e^{x}, x^{2}, x+1, \frac{1}{x} \ldots$

- element-wise operations
- examples: $x+y, x * y, \frac{x}{y} \ldots$

Building blocks

Let $x, y \in \mathbb{R}^{n}$ be input vector.
■ element-wise application ("map") of some scalar function.
■ examples: $e^{x}, x^{2}, x+1, \frac{1}{x} \ldots$

- element-wise operations
- examples: $x+y, x * y, \frac{x}{y} \ldots$
- scalar product
- examples: $\langle x, y\rangle, A x$

Building blocks

Let $x, y \in \mathbb{R}^{n}$ be input vector.

- element-wise application ("map") of some scalar function.

■ examples: $e^{x}, x^{2}, x+1, \frac{1}{x} \ldots$

- element-wise operations
- examples: $x+y, x * y, \frac{x}{y} \ldots$
- scalar product
- examples: $\langle x, y\rangle, A x$
- accumulating ("reduce") operations
- examples: sum/max/min of all components

Building blocks

Let $x, y \in \mathbb{R}^{n}$ be input vector.

- element-wise application ("map") of some scalar function.

■ examples: $e^{x}, x^{2}, x+1, \frac{1}{x} \ldots$

- element-wise operations
- examples: $x+y, x * y, \frac{x}{y} \ldots$
- scalar product
- examples: $\langle x, y\rangle, A x$
- accumulating ("reduce") operations
- examples: sum/max/min of all components
- something special
- examples: matrix inverse

Chain Rule: setting

Given:

$$
\begin{aligned}
& y(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { with jacobian } \nabla_{x} y \in \mathbb{R}^{m \times n} \text { at point } x_{0} \\
& z(y): \mathbb{R}^{m} \rightarrow \mathbb{R}^{k} \text { with jacobian } \nabla_{y} z \in \mathbb{R}^{k \times m} \text { at point } y_{0}
\end{aligned}
$$

Chain Rule: setting

Given:

$$
\begin{aligned}
& y(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { with jacobian } \nabla_{x} y \in \mathbb{R}^{m \times n} \text { at point } x_{0} \\
& z(y): \mathbb{R}^{m} \rightarrow \mathbb{R}^{k} \text { with jacobian } \nabla_{y} z \in \mathbb{R}^{k \times m} \text { at point } y_{0}
\end{aligned}
$$

the task is to find jacobian $\nabla_{x} z \in \mathbb{R}^{k \times n}$ of function

$$
z(x)=z(y(x)): \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}
$$

at point x_{0}.

Chain Rule: setting

Given:

$$
\begin{aligned}
& y(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { with jacobian } \nabla_{x} y \in \mathbb{R}^{m \times n} \text { at point } x_{0} \\
& z(y): \mathbb{R}^{m} \rightarrow \mathbb{R}^{k} \text { with jacobian } \nabla_{y} z \in \mathbb{R}^{k \times m} \text { at point } y_{0}
\end{aligned}
$$

the task is to find jacobian $\nabla_{x} z \in \mathbb{R}^{k \times n}$ of function

$$
z(x)=z(y(x)): \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}
$$

at point x_{0}.
Centralize everything:

$$
\begin{aligned}
& \Delta x=x-x_{0} \\
& \Delta y=y-y_{0} \\
& \Delta z=z-z_{0}
\end{aligned}
$$

Chain Rule for jacobians

$$
\begin{aligned}
\Delta y & =\nabla_{x} y \Delta x+\overline{\bar{o}}(\Delta x) \\
\Delta z & =\nabla_{y} z \Delta y+\overline{\bar{o}}(\Delta y) \\
\Delta z & =\nabla_{x} z \Delta x+\overline{\bar{o}}(\Delta x)
\end{aligned}
$$

Chain Rule for jacobians

$$
\begin{aligned}
& \Delta y=\nabla_{x} y \Delta x+\overline{\bar{o}}(\Delta x) \\
& \Delta z=\nabla_{y} z \Delta y+\overline{\bar{o}}(\Delta y) \\
& \Delta z=\nabla_{x} z \Delta x+\overline{\bar{o}}(\Delta x)
\end{aligned}
$$

Insert first in second:

$$
\Delta z=\nabla_{y} z \nabla_{x} y \Delta x+\nabla_{y} z \overline{\bar{o}}(\Delta x)+\overline{\bar{o}}\left(\nabla_{x} y \Delta x+\overline{\bar{o}}(\Delta x)\right)
$$

Chain Rule for jacobians

$$
\begin{aligned}
\Delta y & =\nabla_{x} y \Delta x+\overline{\bar{o}}(\Delta x) \\
\Delta z & =\nabla_{y} z \Delta y+\overline{\bar{o}}(\Delta y) \\
\Delta z & =\nabla_{x} z \Delta x+\overline{\bar{o}}(\Delta x)
\end{aligned}
$$

Insert first in second:

$$
\begin{aligned}
\Delta z=\nabla_{y} z \nabla_{x} y \Delta x+\nabla_{y} z \overline{\bar{o}}(\Delta x)+ & \overline{\bar{o}}\left(\nabla_{x} y \Delta x+\overline{\bar{o}}(\Delta x)\right)= \\
& =\nabla_{y} z \nabla_{x} y \Delta x+\overline{\bar{o}}(\Delta x)
\end{aligned}
$$

Chain Rule for jacobians

$$
\begin{aligned}
& \Delta y=\nabla_{x} y \Delta x+\overline{\bar{o}}(\Delta x) \\
& \Delta z=\nabla_{y} z \Delta y+\overline{\bar{o}}(\Delta y) \\
& \Delta z=\nabla_{x} z \Delta x+\overline{\bar{o}}(\Delta x)
\end{aligned}
$$

Insert first in second:

$$
\begin{array}{r}
\Delta z=\nabla_{y} z \nabla_{x} y \Delta x+\nabla_{y} z \overline{\bar{o}}(\Delta x)+ \\
=\overline{\bar{o}}\left(\nabla_{x} y \Delta x+\overline{\bar{o}}(\Delta x)\right)= \\
\\
=\nabla_{y} z \nabla_{x} y \Delta x+\overline{\bar{o}}(\Delta x)
\end{array}
$$

Chain rule for jacobians

$$
\nabla_{x} z=\nabla_{y} z \nabla_{x} y
$$

Chain Rule for differentials

$$
\begin{aligned}
\Delta y & =D_{x} y[\Delta x]+\overline{\bar{o}}(\Delta x) \\
\Delta z & =D_{y} z[\Delta y]+\overline{\bar{o}}(\Delta y) \\
\Delta z & =D_{x} z[\Delta x]+\overline{\bar{o}}(\Delta x)
\end{aligned}
$$

Chain Rule for differentials

$$
\begin{aligned}
\Delta y & =D_{x} y[\Delta x]+\overline{\bar{o}}(\Delta x) \\
\Delta z & =D_{y} z[\Delta y]+\overline{\bar{o}}(\Delta y) \\
\Delta z & =D_{x} z[\Delta x]+\overline{\bar{o}}(\Delta x)
\end{aligned}
$$

Insert first in second:

$$
\Delta z=D_{y} z\left[D_{x} y[\Delta x]\right]+D_{y} z[\overline{\bar{o}}(\Delta x)]+\overline{\bar{o}}\left(D_{x} y[\Delta x]+\overline{\bar{o}}(\Delta x)\right)
$$

Chain Rule for differentials

$$
\begin{aligned}
\Delta y & =D_{x} y[\Delta x]+\overline{\bar{o}}(\Delta x) \\
\Delta z & =D_{y} z[\Delta y]+\overline{\bar{o}}(\Delta y) \\
\Delta z & =D_{x} z[\Delta x]+\overline{\bar{o}}(\Delta x)
\end{aligned}
$$

Insert first in second:

$$
\begin{aligned}
\Delta z=D_{y} z\left[D_{x} y[\Delta x]\right]+D_{y} z[\overline{\bar{o}}(\Delta x)] & +\overline{\bar{o}}\left(D_{x} y[\Delta x]+\overline{\bar{o}}(\Delta x)\right)= \\
& =D_{y} z\left[D_{x} y[\Delta x]\right]+\overline{\bar{o}}(\Delta x)
\end{aligned}
$$

Chain Rule for differentials

$$
\begin{aligned}
\Delta y & =D_{x} y[\Delta x]+\overline{\bar{o}}(\Delta x) \\
\Delta z & =D_{y} z[\Delta y]+\overline{\bar{o}}(\Delta y) \\
\Delta z & =D_{x} z[\Delta x]+\overline{\bar{o}}(\Delta x)
\end{aligned}
$$

Insert first in second:

$$
\begin{aligned}
\Delta z=D_{y} z\left[D_{x} y[\Delta x]\right]+D_{y} z[\overline{\bar{o}}(\Delta x)] & +\overline{\bar{o}}\left(D_{x} y[\Delta x]+\overline{\bar{o}}(\Delta x)\right)= \\
& =D_{y} z\left[D_{x} y[\Delta x]\right]+\overline{\bar{o}}(\Delta x)
\end{aligned}
$$

Chain rule for differentials

$$
D_{x} z[\Delta x]=D_{y} z\left[D_{x} y[\Delta x]\right]
$$

Chain Rule intuition

Chain Rule intuition

Chain Rule intuition

Backpropagation

Backpropagation

Automatic differentiation

COMPUTATIONAL GRAPH

Parallel computations

Parallel computations

Parallel computations

Let $y=\left[y_{1}, y_{2}\right]$:

$$
\Delta L=\nabla_{y} L \Delta y+\overline{\bar{o}}=
$$

Parallel computations

$$
\begin{aligned}
& \text { Let } y=\left[y_{1}, y_{2}\right]: \\
& \qquad \Delta L=\nabla_{y} L \Delta y+\overline{\bar{o}}=\nabla_{y_{1}} L \Delta y_{1}+\nabla_{y_{2}} L \Delta y_{2}+\overline{\bar{o}}
\end{aligned}
$$

Parallel computations

$$
\begin{aligned}
& \text { Let } y=\left[y_{1}, y_{2}\right] \text { : } \\
& \qquad \begin{aligned}
& \Delta L=\nabla_{y} L \Delta y+\overline{\bar{o}}=\nabla_{y_{1}} L \Delta y_{1}+\nabla_{y_{2}} L \Delta y_{2}+\overline{\bar{o}}= \\
&=\nabla_{y_{1}} L \nabla_{x} y_{1} \Delta x+\nabla_{y_{2}} L \nabla_{x} y_{2} \Delta x+\overline{\bar{o}}
\end{aligned}
\end{aligned}
$$

Parallel computations

Let $y=\left[y_{1}, y_{2}\right]$:

$$
\begin{array}{r}
\Delta L=\nabla_{y} L \Delta y+\overline{\bar{o}}=\nabla_{y_{1}} L \Delta y_{1}+\nabla_{y_{2}} L \Delta y_{2}+\overline{\bar{o}}= \\
=\nabla_{y_{1}} L \nabla_{x} y_{1} \Delta x+\nabla_{y_{2}} L \nabla_{x} y_{2} \Delta x+\overline{\bar{o}}= \\
=\left(\nabla_{y_{1}} L \nabla_{x} y_{1}+\nabla_{y_{2}} L \nabla_{x} y_{2}\right) \Delta x+\overline{\bar{o}}
\end{array}
$$

Arbitrary graphs

