Deep Learning Concepts

Sergey Ivanov (617)

qbrick@mail.ru

September 16, 2019

- Putting some pieces together
- Vector differentiation
- Backpropagation

Backpropagation

Putting some pieces together

Motivation to discuss again

- to have another view on vector differentiation
- to draw some connections between different subjects
- highlight theory we (implicitly?) utilize

Motivation to discuss again

- to have another view on vector differentiation
- to draw some connections between different subjects
- highlight theory we (implicitly?) utilize

Motivation to discuss again

- to have another view on vector differentiation
- to draw some connections between different subjects
- highlight theory we (implicitly?) utilize

Backpropagation

Finite vector spaces

Theorem

All *n*-dimensional vector spaces¹ are isomorphic

Backpropagation 0 000000000000 0000000 000000

Key task!

$$f(x): \mathbb{R}^n \to \mathbb{R}$$

 $f(x) \to \min_x$

Backpropagation

Key task!

$$f(x): \mathbb{R}^n \to \mathbb{R}$$
$$f(x) \to \min_x$$

Alternative view:

MSU

How can we for some x_0 find x so that $f(x) < f(x_0)$?

Key task!

$$f(x): \mathbb{R}^n \to \mathbb{R}$$
$$f(x) \to \min_x$$

Alternative view:

How can we for some x_0 find x so that $f(x) < f(x_0)$?

Idea:

Let f(x) = g(x) + h(x), where:

- g(x) is something simple that can be easily optimized
- h(x) is something that we can neglect

Idea:

Let f(x) = g(x) + h(x), where:

- g(x) is something simple that can be easily optimized
- h(x) is something that we can neglect

What simple class of functions g(x) to consider? (a) $g(x + y) = g(x) + g(y) \quad \forall x, y \in \mathbb{R}^n$

Idea:

Let
$$f(x) = g(x) + h(x)$$
, where:

MSU

- g(x) is something simple that can be easily optimized
- h(x) is something that we can neglect

What simple class of functions g(x) to consider? (a) $g(x + y) = g(x) + g(y) \quad \forall x, y \in \mathbb{R}^n$ × some are discontinuous

Idea:

Let
$$f(x) = g(x) + h(x)$$
, where:

MSU

- g(x) is something simple that can be easily optimized
- h(x) is something that we can neglect

What simple class of functions g(x) to consider?
(a) g(x + y) = g(x) + g(y) ∀x, y ∈ ℝⁿ × some are discontinuous
(b) g(αx) = αg(x) ∀α ∈ ℝ, ∀x ∈ ℝⁿ

Idea:

Let
$$f(x) = g(x) + h(x)$$
, where:

MSU

- g(x) is something simple that can be easily optimized
- h(x) is something that we can neglect

What simple class of functions g(x) to consider? (a) $g(x + y) = g(x) + g(y) \quad \forall x, y \in \mathbb{R}^n$ \times some are discontinuous (b) $g(\alpha x) = \alpha g(x) \quad \forall \alpha \in \mathbb{R}, \forall x \in \mathbb{R}^n$ \times some are discontinuous (n > 1)

Idea:

Let
$$f(x) = g(x) + h(x)$$
, where:

- g(x) is something simple that can be easily optimized
- h(x) is something that we can neglect

What simple class of functions g(x) to consider? (a) $g(x + y) = g(x) + g(y) \quad \forall x, y \in \mathbb{R}^n$ \times some are discontinuous (b) $g(\alpha x) = \alpha g(x) \quad \forall \alpha \in \mathbb{R}, \forall x \in \mathbb{R}^n$ \times some are discontinuous (n > 1)Consider (a) + (b) and everything will work out!

Linear functions

$$g: \mathbb{R}^n \to \mathbb{R}$$

 $g(x+y) = g(x) + g(y)$
 $g(\alpha x) = \alpha g(x)$

Question: How this class of functions can be described?

Backpropagation 0 000000000000 000000 00000

Linear functions

$$g: \mathbb{R}^n o \mathbb{R}$$

 $g(x+y) = g(x) + g(y)$
 $g(lpha x) = lpha g(x)$

Question: How this class of functions can be described? n = 1:

$$g: \mathbb{R}^n \to \mathbb{R}$$
$$g(x+y) = g(x) + g(y)$$
$$g(\alpha x) = \alpha g(x)$$

Question: How this class of functions can be described?

•
$$n = 1$$
: $g(x) = kx$ for some $k \in \mathbb{R}$

$$g: \mathbb{R}^n \to \mathbb{R}$$

 $g(x+y) = g(x) + g(y)$
 $g(\alpha x) = \alpha g(x)$

Question: How this class of functions can be described?

■
$$n = 1$$
: $g(x) = kx$ for some $k \in \mathbb{R}$
■ **Proof:** $g(x) = g(x \cdot 1) = xg(1) = \{k := g(1)\} = kx$

Sergey Ivanov (617)

$$g: \mathbb{R}^n \to \mathbb{R}$$

 $g(x+y) = g(x) + g(y)$
 $g(\alpha x) = \alpha g(x)$

Question: How this class of functions can be described?

■
$$n = 1$$
: $g(x) = kx$ for some $k \in \mathbb{R}$
■ **Proof:** $g(x) = g(x \cdot 1) = xg(1) = \{k := g(1)\} = kx$
■ $n \ge 1$:

$$g: \mathbb{R}^n \to \mathbb{R}$$

 $g(x+y) = g(x) + g(y)$
 $g(\alpha x) = \alpha g(x)$

Question: How this class of functions can be described?

■
$$n = 1$$
: $g(x) = kx$ for some $k \in \mathbb{R}$
■ **Proof**: $g(x) = g(x \cdot 1) = xg(1) = \{k := g(1)\} = kx$

• $n \ge 1$: Riesz Representation Theorem

Riesz Representation Theorem

Riesz Theorem² (for finite vector spaces)

Every linear function $g : \mathbb{R}^n \to \mathbb{R}$ can be represented as $g(x) = \sum_{i=1}^{n} x_i y_i$ for some $y \in \mathbb{R}^n$

²proof is relatively simple

Sergey Ivanov (617)

Riesz Representation Theorem

Riesz Theorem² (for finite vector spaces)

Every linear function $g : \mathbb{R}^n \to \mathbb{R}$ can be represented as $g(x) = \sum_{i=1}^{n} x_i y_i$ for some $y \in \mathbb{R}^n$

²proof is relatively simple

Sergey Ivanov (617)

MSU

Deep Learning Concepts

Riesz Representation Theorem

Riesz Theorem² (for finite vector spaces)

Every linear function $g : \mathbb{R}^n \to \mathbb{R}$ can be represented as $g(x) = \sum_{i=1}^{n} x_i y_i$ for some $y \in \mathbb{R}^n$

Linearization

Let $x_0 \in \mathbb{R}^n$ be given point.

$$\underbrace{f(x) - f(x_0)}_{\text{change in function}} = \underbrace{g(x - x_0)}_{\substack{\text{linear part} \\ (\text{differential})}} + \underbrace{h(x - x_0)}_{\substack{\text{approximation} \\ \text{error}}}$$

Backpropagation 0 0000000000000

Linearization

Let $x_0 \in \mathbb{R}^n$ be given point.

Backpropagation

Linearization

Let $x_0 \in \mathbb{R}^n$ be given point.

Sergey Ivanov (617)

Backpropagation

Linearization

Let $x_0 \in \mathbb{R}^n$ be given point.

 x_0

 \mathbb{R}^{n}

$$g(x-x_0) = \langle x-x_0, \nabla f \rangle$$

For some class of functions f («differentiable») we can say something about approximation error $h(x - x_0)$.

For some class of functions f («differentiable») we can say something about approximation error $h(x - x_0)$.

Consider some direction $x = x_0 + \alpha d$, $\alpha \in \mathbb{R}, d \in \mathbb{R}^n$:

$$f(x_0 + \alpha d) - f(x_0) = \alpha \langle d, \nabla f \rangle + h(\alpha d)$$

For some class of functions f («differentiable») we can say something about approximation error $h(x - x_0)$.

Consider some direction $x = x_0 + \alpha d$, $\alpha \in \mathbb{R}, d \in \mathbb{R}^n$:

$$f(x_0 + \alpha d) - f(x_0) = \alpha \langle d, \nabla f \rangle + h(\alpha d)$$

Using some 1d calculus:

$$\lim_{\alpha \to 0} \frac{\alpha \langle d, \nabla f \rangle + h(\alpha d)}{\alpha} = \langle d, \nabla f \rangle + \lim_{\alpha \to 0} \frac{h(\alpha d)}{\alpha}$$

For some class of functions f («differentiable») we can say something about approximation error $h(x - x_0)$.

Consider some direction $x = x_0 + \alpha d$, $\alpha \in \mathbb{R}, d \in \mathbb{R}^n$:

$$f(x_0 + \alpha d) - f(x_0) = \alpha \langle d, \nabla f \rangle + h(\alpha d)$$

Using some 1d calculus:

$$\lim_{\alpha \to 0} \frac{\alpha \langle d, \nabla f \rangle + h(\alpha d)}{\alpha} = \langle d, \nabla f \rangle + \lim_{\alpha \to 0} \frac{h(\alpha d)}{\alpha} =$$

= {1d Taylor theorem} = $\langle d, \nabla f \rangle + 0 = \langle d, \nabla f \rangle$

For some class of functions f («differentiable») we can say something about approximation error $h(x - x_0)$.

Consider some direction $x = x_0 + \alpha d$, $\alpha \in \mathbb{R}, d \in \mathbb{R}^n$:

$$f(x_0 + \alpha d) - f(x_0) = \alpha \langle d, \nabla f \rangle + h(\alpha d)$$

Using some 1d calculus:

$$\lim_{\alpha \to 0} \frac{\alpha \langle d, \nabla f \rangle + h(\alpha d)}{\alpha} = \langle d, \nabla f \rangle + \lim_{\alpha \to 0} \frac{h(\alpha d)}{\alpha} =$$

= {1d Taylor theorem} = $\langle d, \nabla f \rangle + 0 = \langle d, \nabla f \rangle$

if
$$\langle d, \nabla f \rangle < 0$$
, there is $\alpha > 0$:
 $f(x_0 + \alpha d) - f(x_0) < 0$

Gradient Descent

How to choose direction d?

$$\begin{cases} g(x-x_0) \to \min_{x} \\ \rho(x,x_0) \le \varepsilon \end{cases}$$

Gradient Descent

How to choose direction d?

$$\begin{cases} g(x - x_0) \to \min_x \\ \rho(x, x_0) \le \varepsilon \quad \Leftarrow \text{ intuition: } \text{ {\ \ strust region } } \end{cases}$$

Gradient Descent

How to choose direction *d*?

MSU

$$\begin{cases} g(x - x_0) \to \min_{x} \\ \rho(x, x_0) \le \varepsilon \quad \Leftarrow \text{ intuition: } \text{ «trust region »} \end{cases}$$

Standard choice of ρ : $\rho(x, x_0) := \sqrt{\langle x - x_0, x - x_0 \rangle}$

Gradient Descent

How to choose direction *d*?

MSU

$$\begin{cases} g(x - x_0) \to \min_{x} \\ \rho(x, x_0) \le \varepsilon \quad \Leftarrow \text{ intuition: } \text{ "trust region"} \end{cases}$$

Standard choice of ρ : $\rho(x, x_0) := \sqrt{\langle x - x_0, x - x_0 \rangle}$ Solution: $x - x_0 \propto -\nabla f$

Generalization

Consider $f : \mathbb{R}^n \to \mathbb{R}^m$.

Generalization

Consider $f : \mathbb{R}^n \to \mathbb{R}^m$.

$$\begin{cases} f_1(x) - f_1(x_0) = g_1(x - x_0) + h_1(x - x_0) \\ f_2(x) - f_2(x_0) = g_2(x - x_0) + h_2(x - x_0) \\ \vdots \\ f_m(x) - f_m(x_0) = g_m(x - x_0) + h_m(x - x_0) \end{cases}$$

where all g_i are linear.

Backpropagation

Generalization

Consider $f : \mathbb{R}^n \to \mathbb{R}^m$.

$$\begin{cases} f_1(x) - f_1(x_0) = g_1(x - x_0) + h_1(x - x_0) \\ f_2(x) - f_2(x_0) = g_2(x - x_0) + h_2(x - x_0) \\ \vdots \\ f_m(x) - f_m(x_0) = g_m(x - x_0) + h_m(x - x_0) \end{cases}$$

where all g_i are linear.

MSU

Just *m* different functions $\mathbb{R}^n \to \mathbb{R}!$

Generalization

Consider $f : \mathbb{R}^n \to \mathbb{R}^m$.

$$\begin{cases} f_1(x) - f_1(x_0) = \langle x - x_0, \nabla f_1 \rangle + h_1(x - x_0) \\ f_2(x) - f_2(x_0) = \langle x - x_0, \nabla f_2 \rangle + h_2(x - x_0) \\ \vdots \\ f_m(x) - f_m(x_0) = \langle x - x_0, \nabla f_m \rangle + h_m(x - x_0) \end{cases}$$

where all g_i are linear.

MSU

Just *m* different functions $\mathbb{R}^n \to \mathbb{R}!$

Generalization

Consider $f : \mathbb{R}^n \to \mathbb{R}^m$.

$$\begin{cases} f_1(x) - f_1(x_0) = \langle x - x_0, \nabla f_1 \rangle + h_1(x - x_0) \\ f_2(x) - f_2(x_0) = \langle x - x_0, \nabla f_2 \rangle + h_2(x - x_0) \\ \vdots \\ f_m(x) - f_m(x_0) = \langle x - x_0, \nabla f_m \rangle + h_m(x - x_0) \end{cases}$$

where all g_i are linear.

Just *m* different functions $\mathbb{R}^n \to \mathbb{R}!$

Corollary

All linear functions $\mathbb{R}^n \to \mathbb{R}^m$ are

MSU

$$g(x) = Ax$$

Define by $\nabla f \in \mathbb{R}^{m \times n}$ a matrix of component gradients:

$$f(x) - f(x_0) = \underbrace{\nabla f \cdot (x - x_0)}_{\substack{Df[x - x_0] \\ \text{differential}}} + h(x - x_0)$$

Define by $\nabla f \in \mathbb{R}^{m \times n}$ a matrix of component gradients:

Define by $\nabla f \in \mathbb{R}^{m \times n}$ a matrix of component gradients:

Define by $\nabla f \in \mathbb{R}^{m \times n}$ a matrix of component gradients:

Define by $\nabla f \in \mathbb{R}^{m \times n}$ a matrix of component gradients:

	jacobian	differential
Dimensions	m imes n	т
Depends on	<i>x</i> 0	$x_0, x - x_0$

	jacobian	differential
Dimensions	m imes n	т
Depends on	<i>x</i> 0	$x_0, x - x_0$

Question: what to do if argument or value of function is matrix?

	jacobian	differential
Dimensions	m imes n	т
Depends on	<i>x</i> 0	$x_0, x - x_0$

Question: what to do if argument or value of function is matrix?

 $\mathbb{R}^{n\times m}\cong\mathbb{R}^{nm}$

	jacobian	differential
Dimensions	$m \times n$	т
Depends on	<i>x</i> 0	$x_0, x - x_0$

Question: what to do if argument or value of function is matrix?

 $\mathbb{R}^{n \times m} \cong \mathbb{R}^{nm}$

Corollary

Let $A, B \in \mathbb{R}^{n \times m}$

$$\langle A, B \rangle_{\mathbb{R}^{n \times m}} = \langle A. \mathsf{flatten}(), B. \mathsf{flatten}() \rangle_{\mathbb{R}^{nm}}$$

	jacobian	differential
Dimensions	m imes n	т
Depends on	<i>x</i> 0	$x_0, x - x_0$

Question: what to do if argument or value of function is matrix?

 $\mathbb{R}^{n \times m} \cong \mathbb{R}^{nm}$

Corollary

Let $A, B \in \mathbb{R}^{n \times m}$

$$\langle A, B \rangle_{\mathbb{R}^{n \times m}} = \langle A. flatten(), B. flatten() \rangle_{\mathbb{R}^{nm}} = tr(B^T A)$$

Backpropagation

Vector differentiation

Questions:

• what functions $\mathbb{R}^n \to \mathbb{R}$ do we know?

Questions:

- what functions $\mathbb{R}^n \to \mathbb{R}$ do we know?
- how to automatically calculate their gradient?

Questions:

- what functions $\mathbb{R}^n \to \mathbb{R}$ do we know?
- how to automatically calculate their gradient?

1 find some primitive building blocks $\mathbb{R}^n \to \mathbb{R}^m$

Questions:

- what functions $\mathbb{R}^n \to \mathbb{R}$ do we know?
- how to automatically calculate their gradient?
- **1** find some primitive building blocks $\mathbb{R}^n \to \mathbb{R}^m$
- 2 find their jacobians/differentials analytically.

Questions:

- what functions $\mathbb{R}^n \to \mathbb{R}$ do we know?
- how to automatically calculate their gradient?
- **1** find some primitive building blocks $\mathbb{R}^n \to \mathbb{R}^m$
- 2 find their jacobians/differentials analytically.
- **3** construct complex functions using composition

Questions:

- what functions $\mathbb{R}^n \to \mathbb{R}$ do we know?
- how to automatically calculate their gradient?
- **1** find some primitive building blocks $\mathbb{R}^n \to \mathbb{R}^m$
- 2 find their jacobians/differentials analytically.
- **3** construct complex functions using composition
- 4 apply chain rule!

Let $x, y \in \mathbb{R}^n$ be input vector.

- element-wise application ("map") of some scalar function.
 - examples: e^x , x^2 , x + 1, $\frac{1}{x}$...

Let $x, y \in \mathbb{R}^n$ be input vector.

- element-wise application ("map") of some scalar function.
 - examples: e^x , x^2 , x + 1, $\frac{1}{x}$...
- element-wise operations

• examples:
$$x + y$$
, $x * y$, $\frac{x}{y}$...

Let $x, y \in \mathbb{R}^n$ be input vector.

element-wise application ("map") of some scalar function.

• examples:
$$e^x$$
, x^2 , $x + 1$, $\frac{1}{x}$...

element-wise operations

• examples:
$$x + y$$
, $x * y$, $\frac{x}{y}$...

scalar product

MSU

• examples: $\langle x, y \rangle$, Ax

Let $x, y \in \mathbb{R}^n$ be input vector.

- element-wise application ("map") of some scalar function.
 - examples: e^x , x^2 , x + 1, $\frac{1}{x}$...
- element-wise operations
 - examples: x + y, x * y, $\frac{x}{y}$...
- scalar product

- examples: $\langle x, y \rangle$, Ax
- accumulating ("reduce") operations
 - examples: sum/max/min of all components

Let $x, y \in \mathbb{R}^n$ be input vector.

- element-wise application ("map") of some scalar function.
 - examples: e^x , x^2 , x + 1, $\frac{1}{x}$...
- element-wise operations
 - examples: x + y, x * y, $\frac{x}{y}$...
- scalar product
 - examples: $\langle x, y \rangle$, Ax
- accumulating ("reduce") operations
 - examples: sum/max/min of all components
- something special

MSU

examples: matrix inverse

Chain Rule: setting

Given:

 $y(x): \mathbb{R}^n \to \mathbb{R}^m$ with jacobian $\nabla_x y \in \mathbb{R}^{m \times n}$ at point x_0 $z(y): \mathbb{R}^m \to \mathbb{R}^k$ with jacobian $\nabla_y z \in \mathbb{R}^{k \times m}$ at point y_0

Chain Rule: setting

Given:

$$y(x): \mathbb{R}^n \to \mathbb{R}^m$$
 with jacobian $\nabla_x y \in \mathbb{R}^{m \times n}$ at point x_0
 $z(y): \mathbb{R}^m \to \mathbb{R}^k$ with jacobian $\nabla_y z \in \mathbb{R}^{k \times m}$ at point y_0

the task is to find jacobian $abla_x z \in \mathbb{R}^{k imes n}$ of function

$$z(x) = z(y(x)) : \mathbb{R}^n \to \mathbb{R}^k$$

at point x_0 .

Chain Rule: setting

Given:

$$y(x): \mathbb{R}^n \to \mathbb{R}^m$$
 with jacobian $\nabla_x y \in \mathbb{R}^{m \times n}$ at point x_0
 $z(y): \mathbb{R}^m \to \mathbb{R}^k$ with jacobian $\nabla_y z \in \mathbb{R}^{k \times m}$ at point y_0

the task is to find jacobian $abla_x z \in \mathbb{R}^{k imes n}$ of function

$$z(x) = z(y(x)) : \mathbb{R}^n \to \mathbb{R}^k$$

at point x_0 .

Centralize everything:

$$\Delta x = x - x_0$$
$$\Delta y = y - y_0$$
$$\Delta z = z - z_0$$

$$\Delta y = \nabla_x y \Delta x + \bar{o}(\Delta x)$$
$$\Delta z = \nabla_y z \Delta y + \bar{o}(\Delta y)$$
$$\Delta z = \nabla_x z \Delta x + \bar{o}(\Delta x)$$

$$\Delta y = \nabla_x y \Delta x + \bar{o}(\Delta x)$$
$$\Delta z = \nabla_y z \Delta y + \bar{o}(\Delta y)$$
$$\Delta z = \nabla_x z \Delta x + \bar{o}(\Delta x)$$

Insert first in second:

$$\Delta z =
abla_y z
abla_x y \Delta x +
abla_y z ar{ar{o}}(\Delta x) + ar{ar{o}}(
abla_x y \Delta x + ar{ar{o}}(\Delta x))$$

$$\Delta y = \nabla_x y \Delta x + \bar{o}(\Delta x)$$
$$\Delta z = \nabla_y z \Delta y + \bar{o}(\Delta y)$$
$$\Delta z = \nabla_x z \Delta x + \bar{o}(\Delta x)$$

Insert first in second:

$$\Delta z =
abla_y z
abla_x y \Delta x +
abla_y z \overline{ar{o}}(\Delta x) + \overline{ar{o}}(
abla_x y \Delta x + \overline{ar{o}}(\Delta x)) =
abla_y z
abla_x y \Delta x + \overline{ar{o}}(\Delta x)$$

$$\Delta y = \nabla_x y \Delta x + \bar{o}(\Delta x)$$
$$\Delta z = \nabla_y z \Delta y + \bar{o}(\Delta y)$$
$$\Delta z = \nabla_x z \Delta x + \bar{o}(\Delta x)$$

Insert first in second:

$$\begin{split} \Delta z &= \nabla_y z \nabla_x y \Delta x + \nabla_y z \bar{\bar{o}}(\Delta x) + \bar{\bar{o}}(\nabla_x y \Delta x + \bar{\bar{o}}(\Delta x)) = \\ &= \nabla_y z \nabla_x y \Delta x + \bar{\bar{o}}(\Delta x) \end{split}$$

Chain rule for jacobians

$$\nabla_{x}z = \nabla_{y}z\nabla_{x}y$$

$$\Delta y = D_x y [\Delta x] + \bar{o}(\Delta x)$$
$$\Delta z = D_y z [\Delta y] + \bar{o}(\Delta y)$$
$$\Delta z = D_x z [\Delta x] + \bar{o}(\Delta x)$$

$$\Delta y = D_x y [\Delta x] + \bar{o}(\Delta x)$$
$$\Delta z = D_y z [\Delta y] + \bar{o}(\Delta y)$$
$$\Delta z = D_x z [\Delta x] + \bar{o}(\Delta x)$$

Insert first in second:

 $\Delta z = D_y z [D_x y [\Delta x]] + D_y z [\bar{\bar{o}}(\Delta x)] + \bar{\bar{o}}(D_x y [\Delta x] + \bar{\bar{o}}(\Delta x))$

Sergey Ivanov (617)

$$\Delta y = D_x y [\Delta x] + \bar{o}(\Delta x)$$
$$\Delta z = D_y z [\Delta y] + \bar{o}(\Delta y)$$
$$\Delta z = D_x z [\Delta x] + \bar{o}(\Delta x)$$

Insert first in second:

$$\Delta z = D_y z [D_x y [\Delta x]] + D_y z [\bar{o}(\Delta x)] + \bar{o}(D_x y [\Delta x]] + \bar{o}(\Delta x)) =$$

= $D_y z [D_x y [\Delta x]] + \bar{o}(\Delta x)$

Sergey Ivanov (617)

$$\Delta y = D_x y [\Delta x] + \bar{o}(\Delta x)$$
$$\Delta z = D_y z [\Delta y] + \bar{o}(\Delta y)$$
$$\Delta z = D_x z [\Delta x] + \bar{o}(\Delta x)$$

Insert first in second:

$$\Delta z = D_y z [D_x y [\Delta x]] + D_y z [\bar{o}(\Delta x)] + \bar{o}(D_x y [\Delta x]] + \bar{o}(\Delta x)) =$$

= $D_y z [D_x y [\Delta x]] + \bar{o}(\Delta x)$

Chain rule for differentials

$$D_{x}z[\Delta x] = D_{y}z[D_{x}y[\Delta x]]$$

Sergey Ivanov (617)

Chain Rule intuition

Chain Rule intuition

Chain Rule intuition

Backpropagation

Backpropagation

Sergey Ivanov (617)

Sergey Ivanov (617)

Let
$$y = [y_1, y_2]$$
:
 $\Delta L = \nabla_y L \Delta y + \overline{\delta} =$

Let
$$y = [y_1, y_2]$$
:
 $\Delta L = \nabla_y L \Delta y + \overline{\overline{o}} = \nabla_{y_1} L \Delta y_1 + \nabla_{y_2} L \Delta y_2 + \overline{\overline{o}}$

Let
$$y = [y_1, y_2]$$
:

$$\Delta L = \nabla_y L \Delta y + \bar{o} = \nabla_{y_1} L \Delta y_1 + \nabla_{y_2} L \Delta y_2 + \bar{o} =$$

$$= \nabla_{y_1} L \nabla_x y_1 \Delta x + \nabla_{y_2} L \nabla_x y_2 \Delta x + \bar{o}$$

Let
$$y = [y_1, y_2]$$
:

$$\Delta L = \nabla_y L \Delta y + \bar{o} = \nabla_{y_1} L \Delta y_1 + \nabla_{y_2} L \Delta y_2 + \bar{o} =$$

$$= \nabla_{y_1} L \nabla_x y_1 \Delta x + \nabla_{y_2} L \nabla_x y_2 \Delta x + \bar{o} =$$

$$= (\nabla_{y_1} L \nabla_x y_1 + \nabla_{y_2} L \nabla_x y_2) \Delta x + \bar{o}$$

Sergey Ivanov (617)

MSU

Deep Learning Concepts

September 16, 2019 26 / 26

Sergey Ivanov (617)

