Working with text

Victor Kitov

v.v.kitov@yandex.ru

Text mining

- In text mining feature space is usually high dimensional and sparse.
- To handle sparsity design matrix X may be stored in *sparse matrix format*.
- Linear models work well in high dimensional spaces
 - models are already complex due to many features
 - non-linear models have much more parameters and overfit
- Examples of linear models:
 - regression: linear regression with different regularization
 - classification: logistic regression, SVM
- We may also use arbitrary models in diminished feature space with
 - feature extraction (using, for example, PCA)
 - feature selection (using correlation, mutual information, etc.)

Token set

Split documents into individual tokens.

- tokens may be words or symbol sequences
- may or may not include punctuation

2 Form the set of all distinct tokens $\{t_1, t_2, ...\}$.

- ignore stop-words (exact list depends on the application)
- ignore tokens which are too rare and too frequent
- account only for particular parts of speech (nouns, adjectives? verbs? ...)
- May add bigram/trigram collocations
- May normalize words:
 - stemming
 - faster
 - Iemmatization
 - more accurate

Term frequency

- Term-frequency model: $TF(i) = \frac{n_i}{n}$
 - n_i is the number of times t_i appeared in d
 - *n* total number of tokens in *d*.
- TF(i) measures how common is token t_i in the document.
- To make TF(i) less skewed it is usually calculated as

$$TF(i) = ln\left(1+\frac{n_i}{n}\right)$$

Inverted document frequency

- Inverted document frequency: $IDF(i) = \frac{N}{N_i}$
 - N total number of documents in the collection
 - N_i number of documents, containing token t_i .
- *IDF*(*i*) measures how specific is token *i*.
- To avoid skewness IDF is more frequently used as

$$IDF(i) = \ln\left(1 + \frac{N}{N_i}\right)$$

Vector representation of documents

- Consider document *d* and its feature representation *x*.
- Indicator model: $x^i = \mathbb{I}[t_i \in d]$.
- TF model: $x^i = TF(i)$
- TF-IDF model: $x^i = TF(i) * IDF(i)$
- Several representations, indexed by $I_1, I_2, ... I_K$ can be united into single feature representation.

Different account for different features

• Optimization task with regularization:

$$\sum_{n=1}^{N} \mathcal{L}(\widehat{y}_n, y_n | w) + \lambda R(w) \to \min_{w}$$

• Here λ controls complexity of the model:

Different account for different features

• Optimization task with regularization:

$$\sum_{n=1}^{N} \mathcal{L}(\widehat{y}_n, y_n | w) + \lambda R(w) \to \min_{w}$$

• Here λ controls complexity of the model: $\uparrow \lambda \Leftrightarrow$ complexity \downarrow .

Different account for different features

• Optimization task with regularization:

$$\sum_{n=1}^{N} \mathcal{L}(\widehat{y}_n, y_n | w) + \lambda R(w) \to \min_{w}$$

- Here λ controls complexity of the model: $\uparrow \lambda \Leftrightarrow$ complexity \downarrow .
- Suppose we have K groups of features with indices:

$$\textit{I}_1,\textit{I}_2,...\textit{I}_K$$

• We may control the impact of each group on the model:

$$\sum_{n=1}^{N} \mathcal{L}(\widehat{y}_n, y_n | w) + \lambda_1 \mathcal{R}(\{w_i | i \in I_1\}) + \ldots + \lambda_K \mathcal{R}(\{w_i | i \in I_K\}) \to \min_{w}$$

- $\lambda_1, \lambda_2, ... \lambda_K$ can be set using cross-validation.
- Scikit-learn allows to set only single λ. But we can control impact of each feature group by different scaling.