Multimodal topic modeling for exploratory search in

collective blog

Anastasia Yanina • yanina-n@yandex-team.ru Konstantin Vorontsov • voron@forecsys.ru

11th International Conference on Intelligent Data Processing: Theory and Applications

The paradigm of Exploratory Search

- what if the user doesn't know which keywords to use?
- what if the user isn't looking for a single answer?

Gary Marchionini. Exploratory Search: from finding to understanding. Communications of the ACM. 2006, 49(4), p. 41-46.

Iterative "query-browse-refine" search vs Exploratory Search

R.W.White, R.A.Roth. Exploratory Search: beyond the Query-Response paradigm. San Rafael, CA: Morgan and Claypool, 2009.

Exploratory search

Query

Exploratory query is a description of user's search intention (1-2 pages of text)

Search results

Result of exploratory search is a set of relevant articles.

A user should be able to create a complete picture of the subject area after looking through the search results.

Hadosp Maplestoser

 obpatorxy.

\therefore vacmuntraviecta

 овра

 mpazmat mppotice

 ywas, 40 K mpamsmmat asarnott

 zacmatman mpatice:

Example of query for exploratory search

Multimodal topic model

D - set of documents (collective blog articles)
T - set of topics,
M - set of modalities,
W^{1}, \ldots, W^{m} - dictionaries for each modality $m \in M$.
Modalities: words, authors, comment authors, tags, categories.
Φ matrix of term distributions of topics for modality m :

$$
\Phi_{m}=\left(\phi_{w t}^{m}\right)_{W^{m} \times T} \quad \phi_{w t}^{m}=p(w \mid t) \quad \forall m \in M
$$

Θ matrix of topic distributions of documents:

$$
\Theta=\left(\theta_{t d}\right)_{T \times D}, \quad \theta_{t d}=p(t \mid d)
$$

Multimodal ARTM (Additively Regularized Topic Model)

Maximum log-likelihood with multiple modalities and regularization:

$$
\sum_{m \in M} \lambda_{m} \sum_{d \in D} \sum_{w \in W^{m}} n_{d w} \ln \sum_{t} \phi_{w t} \theta_{t d}+R(\Phi, \Theta) \rightarrow \max _{\Phi, \Theta}
$$

where $R(\Phi, \Theta)=\sum_{i=1}^{n} \tau_{i} R_{i}(\Phi, \Theta)$ is a combination of regularizers.

EM-algorithm is a simple iteration method for the system

$$
\text { E-step: }\left\{\begin{array}{l}
p_{t d w}=\underset{t \in T}{\operatorname{norm}}\left(\phi_{w t} \theta_{t d}\right) \\
\phi_{w t}=\operatorname{norm}_{w \in W^{m}}\left(\sum_{d \in D} \lambda_{m(w)} n_{d w} p_{t d w}+\phi_{w t} \frac{\partial R}{\partial \phi_{w t}}\right) \\
\theta_{t d}=\operatorname{norm}_{t \in T}\left(\sum_{w \in d} \lambda_{m(w)} n_{d w} p_{t d w}+\theta_{t d} \frac{\partial R}{\partial \theta_{t d}}\right)
\end{array}\right.
$$

BigARTM project

BigARTM features:

- Parallel + Online + Multimodal + Regularized Topic Modeling
- Out-of-core one-pass processing of large text collection
- Built-in library of regularizers and quality measures

BigARTM community:

- Open-source https://github.com/bigartm (discussion group, issue tracker, pull requests)
- Documentation http://bigartm.org

BigARTM license and programming environment:

- Freely available for commercial usage (BSD 3-Clause license)
- Cross-platform - Windows, Linux, Mac OS X (32 bit, 64 bit)
- Programming APIs: command-line, C++, and Python

Data from collective blog habrahabr.ru

Data

- 132157 articles (in Russian)
- Metadata:
- author
- tags and categories
- comments and their authors
- number of article views
- number of article likes

Modalities of the collective blog

- Terms: 52354 unigram words
- Article authors: 1000 users
- Comment authors: 10000 users
- Tags: 2546
- Categories: 123

Regularizers and quality criteria

Regularizers

- Decorrelation for terms in topics
- Smoothing for terms in topics
- Sparsity of topics in documents
- Background topics to highlight common vocabulary words

Quality criteria

- Perplexity
- Sparsity of terms in topics
- Sparsity of topics in documents

Greedy coordinate-wise multicriteria optimization of regularization coefficients

We add regularizers one by one to improve sparsity without loss of the perplexity.

Perplexity

Θ sparsity

Φ sparsity (words)

Topical exploratory search

(1) Learn a topic model from a text collection (offline)
(2) Calculate a topic representation of the query (quick online)
(3) Rank documents by topical similarity to the query
(9) Use top k documents as search result
$q=\left(w_{1}, \ldots, w_{n_{q}}\right)-$ query text of n_{q} terms
$\theta_{t q}=p(t \mid q)$ - topic distribution of query q
$\theta_{t d}=p(t \mid d)$ - topic distribution of document $d \in D$
Cosine measure of similarity between document d and query q :

$$
\operatorname{sim}(q, d)=\frac{\sum_{t} \theta_{t q} \theta_{t d}}{\left(\sum_{t} \theta_{t q}^{2}\right)^{1 / 2}\left(\sum_{t} \theta_{t d}^{2}\right)^{1 / 2}}
$$

Inverted index can by used for search documents d by query topics t

Evaluation of the exploratory search quality

Two tasks for assessors:
(1) Find as much as possible relevant articles using any tools (search engines, searching by tags, etc.)
(2) Evaluate the relevance of topical search for the same query.

Examples of ES-query titles in our experiment

Algorithms for coloring graphs Netflix
Techniques for fast typing
Elon Mask space projects Hadoop MapReduce
Self-driving Google car
Public-key cryptography
Platforms for online education
Data Science Meetups in Moscow
Educational projects mail.ru Interplanetary station New horizons Word2vec

Results of search quality evaluation

Number of queries: 25 (10 are shown in the table, averages by 25) Number of assessors per query: 3
Average time for processing query: 30 minutes
Automatic topical search vs. assessors' search

Assessors				Topical search		
search time	docs found	Preci- sion	Recall	docs found	Preci- sion	Recall
48	9	0.89	0.80	12	0.83	1.0
40	25	0.92	0.95	25	0.92	1.0
15	10	0.80	0.88	11	0.72	1.0
40	18	0.94	0.85	20	0.85	0.85
40	55	0.92	1.0	57	0.84	0.94
15	12	0.91	1.0	14	0.57	1.0
25	12	0.94	0.83	10	0.90	0.75
28	12	0.83	0.9	10	0.80	0.72
50	7	0.88	0.88	10	0.70	0.88
45	15	0.94	0.93	23	0.60	0.88
average:	$\mathbf{1 8}$	$\mathbf{0 . 8 7}$	$\mathbf{0 . 8 9}$	$\mathbf{2 0}$	$\mathbf{0 . 7 7}$	0.91

Results of search quality evaluation

Assessors vs. topical search: Precision, Recall, F1, Time

Precision and Recall

Time and f-measure

Results of search quality evaluation (in average)

Number of queries: 25 (10 are shown in the table, averages by 25) Number of assessors per query: 3
Average time for processing query: 30 minutes

Automatic topical search vs. assessors' search
(all metrics are averaged by queries)

Metric	assessors	topical search
Precision@5	0.82	0.74
Precision@10	0.87	0.77
Precision@15	0.86	0.68
Precision@20	0.85	0.68
Recall@5	0.78	0.82
Recall@10	0.84	0.88
Recall@15	0.88	0.90
Recall@20	0.88	0.91

Finding the optimal number of topics in model

The advantage of our evaluation technique:

Asking assessors once, we can evaluate and compare many models

Assessors' vs. topical search: Precision@k and Recall@k, for the model with 5 modalities and different number of topics $|T|$

	asessors	100	200	300	400	500
Precision@5	0.82	0.61	0.74	0.71	0.69	0.59
Precision@10	0.87	0.65	0.77	0.72	0.67	0.61
Precision@15	0.86	0.67	0.68	0.67	0.65	0.62
Precision@20	0.85	0.64	0.68	0.67	0.64	0.60
Recall@5	0.78	0.62	0.82	0.80	0.72	0.63
Recall@10	0.84	0.63	0.88	0.81	0.75	0.64
Recall@15	0.88	0.67	0.90	0.82	0.77	0.67
Recall@20	0.88	0.69	0.91	0.85	0.77	0.68

Finding the optimal set of modalities

The advantage of our evaluation technique:

Asking assessors once, we can evaluate and compare many models

Assessors' vs. topical search: Precision@k and Recall@k, with fixed $|T|=200$ and different sets of modalities
(Words, $\underline{\text { Tags, }}$ Hubs (categories), $\underline{\text { Authors, }}$ Comment authors)

	assessors	W	C	TH	WT	WH	WTH	WTHAC
Pr@5	0.82	0.63	0.54	0.59	0.74	0.73	0.73	0.74
Pr@10	0.87	0.67	0.56	0.58	0.77	0.74	0.75	0.77
Pr@15	0.86	0.65	0.53	0.55	0.67	0.67	0.68	0.68
Pr@20	0.85	0.64	0.53	0.54	0.66	0.67	0.68	0.68
Recall@5	0.78	0.77	0.63	0.69	0.82	0.81	0.82	0.82
Recall@10	0.84	0.79	0.64	0.71	0.88	0.82	0.87	0.88
Recall@15	0.88	0.82	0.67	0.73	0.90	0.84	0.89	0.90
Recall@20	0.88	0.85	0.68	0.74	0.91	0.85	0.89	0.91

Conclusions \& Contacts

- We used ARTM for the topical Exploratory Search
- We proposed the evaluation technique for Exploratory Search
- The automatic topical Exploratory Search is much faster than assessors' one, having comparable quality

Yanina Anastasia

Analyst, Yandex LLC
Moscow Institute of Physics and Technology
yanina-n@yandex-team.ru

