Generative adversarial networks

Victor Kitov

v v kit ov@yandex ru

Intuition of adversarial learning

Generative adversarial learning for images:

Analogy for bank and a money counterfeiter (having a spy in the bank).

• they compete, until money counterfeiter learns to make perfect money replicas!

Seminal paper on GAN¹

- 2 multilayer perceptrons:
 - generator $G(z) = G(z| heta_g)$
 - outputs generated object x
 - discriminator $D(x) = D(x|\theta_d)$
 - probability that x is from training set and not generated by G.

¹https://arxiv.org/pdf/1406.2661.pdf

Game

D and G play two-player game with minimax function V(G, D)

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim p_z(z)} \left[\log(1 - D(G(z))) \right]$$

Incremental learning: $\langle \rangle$

Losses

Score for discriminator (for fixed θ_g):

$$\mathbb{E}_{x \sim p_{data}(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim p_z(z)} \left[\log(1 - D(G(z))) \right] \rightarrow \max_{\substack{\theta_d \\ \theta_d}}$$

Score for generator (probability of being detected):

$$\mathbb{E}_{z \sim p_z(z)} \left[\log(1 - D(G(z))) \right] \rightarrow \min_{\theta_g}$$

- on early iterations generator is very unrealistic
- so $D(G(z)) \approx 0$, gradient of $\log(1 D(G(z)))$ is small.
- better works another score:

$$\mathbb{E}_{z \sim
ho_z(z)}\left[\log(D(G(z)))
ight]
ightarrow \max_{ heta_g}$$

Algorithm

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}\$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Optimal value for discriminator

Theorem: For fixed G optimal discriminator is:

$$D^*(x|G) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)}$$

Proof:

$$V(G,D) = \int_{x} p_{data}(x) \log(D(x)) dx + \int_{z} p_{z}(x) \log(1 - D(g(z))) dz =$$
$$= \int_{x} p_{data}(x) \log(D(x)) dx + p_{g}(x) \log(1 - D(x)) dx$$

Since arg $\max_y \left\{ a \log(y) + b \log(1-y) \right\} = \frac{a}{a+b}$ for any a, b = >

$$\mathop{\mathrm{arg\,max}}_D V(G,D) = rac{p_{data}(x)}{p_{data}(x) + p_g(x)}$$

Optimal

Generator cost function:

$$\begin{split} C(G) &= \max_{D} V(G, D) \\ &= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_{G}^{*}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}} [\log(1 - D_{G}^{*}(G(\boldsymbol{z})))] \\ &= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_{G}^{*}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} [\log(1 - D_{G}^{*}(\boldsymbol{x}))] \\ &= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\boldsymbol{x})}{P_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} \right] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} \left[\log \frac{p_{g}(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} \right] \end{split}$$

This is maximized for $p_g(x) = p_{data}(x)$:

$$C(G) = \mathbb{E}\log \frac{1}{2} + \mathbb{E}\log \frac{1}{2}$$

Generated images

Latent space

Linear interpolation of objects in latent space:

Results

Parzen-window based log-likelihood:

- MNIST dataset of digit images
- TFD Toronto faces dataset

Model	MNIST	TFD
DBN [3]	138 ± 2	1909 ± 66
Stacked CAE [3]	121 ± 1.6	2110 ± 50
Deep GSN [6]	214 ± 1.1	1890 ± 29
Adversarial nets	225 ± 2	2057 ± 26

Table of Contents

Deep convolutional GAN

- 2 Semi-supervised learning with GAN
- 3 Minibatch discrimination
- ④ Combining VAE and GAN
- 6 Application use-case

Deep convolutional GAN

Deep convolutional GAN²

 $^{2} https://arxiv.org/pdf/1511.06434.pdf$

13/57

Architecture guidelines for stable DCGANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.

Deep convolutional GAN

Generated bedroooms

Deep convolutional GAN

with glasses

Latent space arithmetics

woman with glasses

woman without glasses

man without glasses

Generative adversarial networks - Victor Kitov Semi-supervised learning with GAN

Table of Contents

Deep convolutional GAN

2 Semi-supervised learning with GAN

- 3 Minibatch discrimination
- ④ Combining VAE and GAN
- 6 Application use-case

Semi-supervised learning with GAN

Semi-supervised learning with GAN³

- Semisupervised GAN (SGAN):
 - classifier and discriminator are united
 - classifier outputs C + 1 probabilities:

$$[p(y = 1|x), ...p(y = C|x), p(x \text{ was generated}|x)]$$

• Discriminator and classification have shared weights helping each other.

³Link to paper.

Semi-supervised learning with GAN

Algorithm of SGAN

Algorithm 1 SGAN Training Algorithm

Input: *I*: number of total iterations

for i = 1 to I do

Draw *m* noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.

Draw *m* examples $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$ from data generating distribution $p_d(x)$.

Perform gradient descent on the parameters of D w.r.t. the NLL of D/C's outputs on the combined minibatch of size 2m.

Draw *m* noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.

Perform gradient descent on the parameters of G w.r.t. the NLL of D/C's outputs on the minibatch of size m. end for

Generative adversarial networks - Victor Kitov Semi-supervised learning with GAN

SGAN convegres faster:

Generated MNIST images by SGAN (left) and GAN (right) after 2 MNIST epochs

Generative adversarial networks - Victor Kitov Semi-supervised learning with GAN

SGAN experiments

Semi-supervised learning improves accuracy for small training sets.

Accuracy comparisons of supervised and semisupervised classifier on MNIST:

EXAMPLES	CNN	SGAN
1000	0.965	0.964
100	0.895	0.928
50	0.859	0.883
25	0.750	0.802

Table of Contents

Deep convolutional GAN

2 Semi-supervised learning with GAN

- 3 Minibatch discrimination
- 4 Combining VAE and GAN
- 5 Application use-case

Minibatch discrimination

Problem of model collapse

- Problem generator can converge to reproduce one most typical object
- Reason discriminator deals with objects one by one.
- Solution train discriminator on minibatch⁴

Algorithm

- Let f(x_i) ∈ ℝ^A vector of features of some intermediate layer of discriminator.
- Multiply it by trainable tensor $T \in \mathbb{R}^{A \times B \times C}$: $f(x_i) * T = M \in R^{B \times C}$
- Calculate $c_b(x_i, x_j) = e^{-\|M_{i,b} M_{j,b}\|_1} \in \mathbb{R}, \ b = 1, 2, ...B, i, j = 1, ...n.$

• *b*-row number.

Algorithm

•
$$o(x_i)_b = \sum_{j=1}^n c_b(x_i, x_j) \in \mathbb{R}$$

•
$$o(x_i) = [o(x_i)_1, o(x_i)_2, ... o(x_i)_B] \in \mathbb{R}^B$$

- Feed to discriminator concatenation $[o(x_i), f(x_i)]$
- We compute minibatch features separately for
 - minibatches of training data
 - minibathes of generated data

How it works

- So discriminator classifies single object, but knows side information about its context.
 - in model collapse $f(x_i)$ would be much less diverse for generated minibatches, than for true ones
 - discriminator will account for that

Yet another criteria to train discriminator⁵

- Idea: discriminator on inner layers extracts discriminative features *f*.
- Fit generator so that statistics of f(Gen(z)) and f(x) for real x are the same.
- New loss for generator:

$$\left\|\mathbb{E}_{x \sim p_{data}} f(x) - \mathbb{E}_{z \sim p_z(z)} f(Gen(z))\right\|_2^2$$

- This heuristic helps to improves convergence of original GAN algorithm
 - non-convergence is usually cyclic when modification of Gen makes modifications of Dis obsolete and vice versa in terms of common loss function.

⁵https://arxiv.org/pdf/1606.03498.pdf

Generative adversarial networks - Victor Kitov Combining VAE and GAN

Table of Contents

Deep convolutional GAN

2 Semi-supervised learning with GAN

- 3 Minibatch discrimination
- 4 Combining VAE and GAN
- 5 Application use-case

Problem

- VAE is trained to generate versatile objects
 - because it is tuned to reproduce most of training set
 - but gives smoothed output
- GAN is subject to model collapse
 - but gives realistic output
- Idea: combine them⁶

Generative adversarial networks - Victor Kitov Combining VAE and GAN

Proposed arcitecture

• Generator of VAE = generator of GAN

Generative adversarial networks - Victor Kitov Combining VAE and GAN

VAE reminder

• usually
$$p(z) = \mathcal{N}(0, I)$$

Proposed modification

- Oversmoothed output of VAE because of element-wise loss in VAE
- Let's extract high level features from intermediate layer of discriminator!
- Replace $\mathcal{L}_{log-lik}$ from output space to high level features space
- x-real, from VAE: x → z → x̃ (z and x̃ are sampled). Are x̃ close to x?
- Let Dis_l(x) hidden layer l representation of x by discriminator.
- Assume

$$p(Dis_{l}(x)|z) = \mathcal{N}(Dis_{l}(x)|Dis_{l}(\tilde{x}), I)$$

• Replace original $\mathcal{L}_{\textit{log}-\textit{lik}}$ with

$$\mathcal{L}_{log-lik} = -\mathbb{E}_{q(z|x)} \left[\log p \left(Dis_l(x) | z \right) \right]$$

• Model is trained on $\mathcal{L}_{\textit{prior}} + \mathcal{L}_{\textit{log-lik}} + \mathcal{L}_{\textit{GAN}}$

Training VAE/GAN model

 $\boldsymbol{\theta}_{\text{Enc}}, \boldsymbol{\theta}_{\text{Dec}}, \boldsymbol{\theta}_{\text{Dis}} \leftarrow \text{initialize network parameters}$ repeat $X \leftarrow$ random mini-batch from dataset $Z \leftarrow \operatorname{Enc}(X)$ $\mathcal{L}_{\text{prior}} \leftarrow D_{\text{KL}}(q(\boldsymbol{Z}|\boldsymbol{X}) \| p(\boldsymbol{Z}))$ $\tilde{X} \leftarrow \text{Dec}(Z)$ $\mathcal{L}_{\text{line}}^{\text{Dis}_l} \leftarrow -\mathbb{E}_{q(\boldsymbol{Z}|\boldsymbol{X})}\left[p(\text{Dis}_l(\boldsymbol{X})|\boldsymbol{Z})\right]$ $Z_p \leftarrow$ samples from prior $\mathcal{N}(\mathbf{0}, I)$ $X_n \leftarrow \operatorname{Dec}(Z_n)$ $\mathcal{L}_{GAN} \leftarrow \log(\mathrm{Dis}(\mathbf{X})) + \log(1 - \mathrm{Dis}(\tilde{\mathbf{X}}))$ $+\log(1 - \operatorname{Dis}(\boldsymbol{X}_n))$ // Update parameters according to gradients $\boldsymbol{\theta}_{\text{Enc}} \stackrel{+}{\leftarrow} - \nabla_{\boldsymbol{\theta}_{\text{Enc}}} (\mathcal{L}_{\text{prior}} + \mathcal{L}_{\text{llike}}^{\text{Dis}_l})$ $\boldsymbol{\theta}_{\text{Dec}} \stackrel{+}{\leftarrow} - \nabla_{\boldsymbol{\theta}_{\text{Dec}}} (\gamma \mathcal{L}_{\text{links}}^{\text{Dis}_l} - \mathcal{L}_{\text{GAN}})$ $\boldsymbol{\theta}_{\text{Dis}} \stackrel{+}{\leftarrow} - \nabla \boldsymbol{\theta}_{\text{Dis}} \mathcal{L}_{\text{GAN}}$ until deadline

Generative adversarial networks - Victor Kitov Combining VAE and GAN

Data flow during training

Generative adversarial networks - Victor Kitov Combining VAE and GAN

Comparison of results

Table of Contents

- Deep convolutional GAN
- 2 Semi-supervised learning with GAN
- 3 Minibatch discrimination
- ④ Combining VAE and GAN
- **5** Application use-case
 - Peak signal-to-noise ratio (PSNR)
 - Experiments

- From transformed image->reconstruct original image
 - denoising, super-resolution, deblurring.
- Quality metric: peak signal-to-noise ratio (PSNR)
- Datasets:
 - Human faces Large-scale CelebFaces Attributes Dataset
 - Natural scenes MIT Places Database

⁷From

http://stanford.edu/class/ee367/Winter2017/yan_wang_ee367_win17_report.pdf

Architecture

- 2 networks: generator, discriminator.
- Discriminator tries to discriminate whether:
 - image came from the training set
 - image came from the generator
- Generator takes corrupted image as input and tries to reconstruct original image.

Losses

- Generator loss: $0.9\mathcal{L}_{content} + 0.1\mathcal{L}_{G,advers}$
 - $\mathcal{L}_{content} = \left\| I \widehat{I} \right\|_{1}$, where *I*-original and \widehat{I} -reconstructed image.
 - $\mathcal{L}_{G,advers}$ -standard generator adversarial loss.
- Discriminator loss: $\mathcal{L}_{D,advers}$
 - $\mathcal{L}_{D,advers}$ -standard discriminator adversarial loss.

Application use-case

Generator, discriminator structure

Discriminator network

Generator details

- Residual networks are used in generator.⁸
- Key idea of residual network:
 - use much more layers
 - layers grouped into groups with similar structure
 - each group learns **small correction** to identity function (to prevent overfitting)

Building block of residual network:

⁸https://arxiv.org/pdf/1512.03385.pdf

41/57

Application use-case

Peak signal-to-noise ratio (PSNR)

- Peak signal-to-noise ratio (PSNR)
- Experiments

Application use-case Peak signal-to-noise ratio (PSNR)

Definitions

- I: original image
- K: reconstructed image
- *m*, *n*: image dimensions
- Mean squared error (MSE):
 - for grayscale images:

$$MSE = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[I(i,j) - K(i,j) \right]^{2}$$

• for (r,g,b) images (let c be color channel):

$$MSE = \frac{1}{3mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{c=1}^{3} \left[I(i,j,c) - K(i,j,c) \right]^{2}$$

• MAX: maximum possible pixel value

• for *B*-bit image $MAX = 2^B - 1$

Application use-case

Peak signal-to-noise ratio (PSNR)

Peak signal-to-noise ratio (PSNR)[®]

PSNR measures quality of image reconstruction:

$$PSNR = 10 \log_{10} \left(\frac{MAX^2}{MSE} \right)$$

⁹https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

Application use-case

Experiments

• Peak signal-to-noise ratio (PSNR)

• Experiments

Application use-case

Experiments

Super-resolution

- **Super-resolution:** recover higher resolution image from its low resolution variant.
 - e.g. from limited device zoom capacity (camera, microscope)
- Baseline algorithms:
 - naive scaling (LRes)
 - bicubic interpolation (Bicubic)
- Results:
 - PSNR of bicubic is best, but GAN-reconstructed images are more sharp

and more good-looking for humans (retain high level features).

• GAN super-resolution for faces works better than for places (which are less typical)

Application use-case

Experiments

Super-resolution outputs (subsampling=2)

Origin

Origin

Bicubic DCGAN

Bicubic

Application use-case

Experiments

Super-resolution outputs (subsampling=4)

Original

LRes

Original

Bicubic DCGAN

Bicubic

LRes

Application use-case

Experiments

Baselines

- Denoising: noisy image->clean image
 - e.g. from measurement imperfection.
- Baseline algorithms:
 - median filter
 - non-local means
- Results:
 - PSNR are comparable, but GAN-reconstructed images are more sharp and more good-looking for humans (retain high level features).

Application use-case

Experiments

Non-local means baseline¹⁰

$$u(p) = \frac{1}{C(p)} \sum_{q \in \Omega} v(q) f(p,q)$$

where we used definitions:

- $v(\cdot)$: original image with noise
- $u(\cdot)$: denoised image
- p,q: image locations
- f(p,q): similarity of pixels p,q by their neighborhoods $R(\cdot)$

•
$$C(p) = \sum_{q \in \Omega} f(p,q)$$

•
$$f(p,q) = e^{-\frac{1}{h^2}|B(q)-B(p)|^2}$$

•
$$B(p) = \frac{1}{|R(p)|} \sum_{i \in R(p)} v(i)$$

Application use-case

Experiments

Denoising outputs

Experiments

Deblurring

- Deblurring: images blurred and small Gaussian noise added.
 - e.g. from camera motion.
- Baseline algorithms:
 - Wiener filter
 - alternating direction method of multipliers (ADMM)
- Results:
 - PSNR of GAN is lower, but GAN-reconstructed images are more sharp
 - and more good-looking for humans (retain high level features).
 - GAN super-resolution for faces works better than for places (which are less typical)

Application use-case

Experiments

Deblurring faces outputs

Application use-case

Experiments

Deblurring places outputs (not accurate)

Application use-case

Experiments

Analysis of experiments

- Unequal conditions:
 - Baseline methods use only test image.
 - GAN uses information from the whole training set.
- GANs give smaller PSNR
 - may be attributed to small training set
- GANs give more sharp output
 - to fool "blurry-based" discriminator
 - do not fallback to averaging as standard methods

Application use-case

Experiments

Another possible GAN application: impainting

Application use-case

Experiments

Analysis of experiments

- GANs reproduce small details on images
 - details learned from other images of the training set.
- GAN performance can be improved by training on specific subsets of objects
 - e.g. train separate face models for different sex, age, nationality, etc.
 - especially important for diverse objects such as places.