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Intuition of adversarial learning

Generative adversarial learning for images:

Analogy for bank and a money counterfeiter (having a spy in the

bank).

they compete, until money counterfeiter learns to make perfect

money replicas!
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Seminal paper on GAN1

2 multilayer perceptrons:
generator G (z) = G (z |θg )

outputs generated object x

discriminator D(x) = D(x |θd)
probability that x is from training set and not generated by G .

1https://arxiv.org/pdf/1406.2661.pdf
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Game

D and G play two-player game with minimax function V (G ,D)

min
G

max
D

V (D,G ) = Ex∼pdata(x) [logD(x)]+Ez∼pz (z) [log(1− D(G (z)))]

Incremental learning:〈〉

black dotted: pdata(x); green: pgenerated(x); blue: D(x) = p(x is true|x)

4/57



Generative adversarial networks - Victor Kitov

Losses

Score for discriminator (for �xed θg ):

Ex∼pdata(x) [logD(x)] + Ez∼pz (z) [log(1− D(G (z)))]→ max
θd

Score for generator (probability of being detected):

Ez∼pz (z) [log(1− D(G (z)))]→ min
θg

on early iterations generator is very unrealistic

so D(G (z)) ≈ 0, gradient of log(1− D(G (z)) is small.

better works another score:

Ez∼pz (z) [log(D(G (z)))]→ max
θg
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Algorithm
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Optimal value for discriminator

Theorem: For �xed G optimal discriminator is:

D∗(x |G ) =
pdata(x)

pdata(x) + pg (x)

Proof:

V (G ,D) =

∫
x
pdata(x) log(D(x))dx +

∫
z
pz(x) log(1− D(g(z)))dz =

=

∫
x
pdata(x) log(D(x))dx + pg (x) log(1− D(x))dx

Since arg maxy {a log(y) + b log(1− y)} = a
a+b for any a, b =>

arg max
D

V (G ,D) =
pdata(x)

pdata(x) + pg (x)
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Optimal

Generator cost function:

This is maximized for pg (x) = pdata(x):

C (G ) = E log
1

2
+ E log

1

2
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Generated images
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Latent space

Linear interpolation of objects in latent space:
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Results

Parzen-window based log-likelihood:

MNIST - dataset of digit images

TFD - Toronto faces dataset
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Deep convolutional GAN
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Deep convolutional GAN

Deep convolutional GAN2

Architecture of DCGAN generator:

2https://arxiv.org/pdf/1511.06434.pdf
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Deep convolutional GAN

Architecture guidelines for stable DCGANs

Replace any pooling layers with strided convolutions

(discriminator) and fractional-strided convolutions (generator).

Use batchnorm in both the generator and the discriminator.

Remove fully connected hidden layers for deeper architectures.

Use ReLU activation in generator for all layers except for the

output, which uses Tanh.

Use LeakyReLU activation in the discriminator for all layers.
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Deep convolutional GAN

Generated bedroooms
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Deep convolutional GAN

Latent space arithmetics
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Semi-supervised learning with GAN
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Semi-supervised learning with GAN

Semi-supervised learning with GAN3

Semisupervised GAN (SGAN):

classi�er and discriminator are united
classi�er outputs C + 1 probabilities:

[p(y = 1|x), ...p(y = C |x), p(x was generated|x)]

Discriminator and classi�cation have shared weights helping

each other.

3Link to paper.
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Semi-supervised learning with GAN

Algorithm of SGAN
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Semi-supervised learning with GAN

SGAN experiments

SGAN convegres faster:

Generated MNIST images by SGAN (left) and GAN (right) after 2
MNIST epochs
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Semi-supervised learning with GAN

SGAN experiments

Semi-supervised learning improves accuracy for small training sets.

Accuracy comparisons of supervised and semisupervised classi�er on
MNIST:
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Minibatch discrimination
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Minibatch discrimination

Problem of model collapse

Problem - generator can converge to reproduce one most

typical object

Reason - discriminator deals with objects one by one.

Solution - train discriminator on minibatch4

4https://arxiv.org/pdf/1606.03498.pdf
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Minibatch discrimination

Algorithm

Let f (xi ) ∈ RA - vector of features of some intermediate layer

of discriminator.

Multiply it by trainable tensor T ∈ RAxBxC :

f (xi ) ∗ T = M ∈ RBxC

Calculate cb(xi , xj) = e−‖Mi,b−Mj,b‖1 ∈ R, b = 1, 2, ...B,
i , j = 1, ...n.

b-row number.
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Minibatch discrimination

Algorithm

o(xi )b =
∑n

j=1 cb(xi , xj) ∈ R
o(xi ) = [o(xi )1, o(xi )2, ...o(xi )B ] ∈ RB

Feed to discriminator concatenation [o(xi ), f (xi )]

We compute minibatch features separately for

minibatches of training data
minibathes of generated data
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Minibatch discrimination

How it works

So discriminator classi�es single object, but knows side
information about its context.

in model collapse f (xi ) would be much less diverse for
generated minibatches, than for true ones
discriminator will account for that
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Minibatch discrimination

Yet another criteria to train discriminator5

Idea: discriminator on inner layers extracts discriminative

features f .

Fit generator so that statistics of f (Gen(z)) and f (x) for real
x are the same.

New loss for generator:∥∥Ex∼pdata f (x)− Ez∼pz (z)f (Gen(z))
∥∥2
2

This heuristic helps to improves convergence of original GAN
algorithm

non-convergence is usually cyclic when modi�cation of Gen
makes modi�cations of Dis obsolete and vice versa in terms of
common loss function.

5https://arxiv.org/pdf/1606.03498.pdf
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Combining VAE and GAN
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Combining VAE and GAN

Problem

VAE is trained to generate versatile objects

because it is tuned to reproduce most of training set
but gives smoothed output

GAN is subject to model collapse

but gives realistic output

Idea: combine them6

6https://arxiv.org/pdf/1512.09300.pdf
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Combining VAE and GAN

Proposed arcitecture

Generator of VAE = generator of GAN
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Combining VAE and GAN

VAE reminder

z ∼ Enc(x) = q(z |x)
x̃ ∼ Dec(z) = p(x |z)
LVAE = Llog−lik + Lprior
Llog−lik = −Eq(z|x) [log p(x |z)]: quality of reconstruction

shows, how close are x and x̃

Lprior = DKL(q(z |x)||p(z)): prior for latent variables
usually p(z) = N (0, I )
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Combining VAE and GAN

Proposed modi�cation

Oversmoothed output of VAE - because of element-wise loss in

VAE

Let's extract high level features from intemediate layer of

discriminator!

Replace Llog−lik from output space to high level features space

x-real, from VAE: x → z → x̃ (z and x̃ are sampled). Are x̃
close to x?
Let Disl(x) - hidden layer l representation of x by

discriminator.

Assume

p(Disl(x)|z) = N (Disl(x)|Disl(x̃), I )
Replace original Llog−lik with

Llog−lik = −Eq(z|x) [log p (Disl(x)|z)]
Model is trained on Lprior + Llog−lik + LGAN
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Combining VAE and GAN

Training VAE/GAN model
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Combining VAE and GAN

Data �ow during training
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Combining VAE and GAN

Comparison of results
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Application use-case
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Application use-case

Experiments7

From transformed image->reconstruct original image

denoising, super-resolution, deblurring.

Quality metric: peak signal-to-noise ratio (PSNR)

Datasets:

Human faces - Large-scale CelebFaces Attributes Dataset
Natural scenes - MIT Places Database

7From
http://stanford.edu/class/ee367/Winter2017/yan_wang_ee367_win17_report.pdf
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Application use-case

Architecture

2 networks: generator, discriminator.

Discriminator tries to discriminate whether:

image came from the training set
image came from the generator

Generator takes corrupted image as input and tries to

reconstruct original image.
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Application use-case

Losses

Generator loss: 0.9Lcontent + 0.1LG ,advers
Lcontent =

∥∥∥I − Î
∥∥∥
1

, where I -original and Î -reconstructed

image.
LG ,advers -standard generator adversarial loss.

Discriminator loss: LD,advers
LD,advers -standard discriminator adversarial loss.
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Application use-case

Generator, discriminator structure
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Application use-case

Generator details

Residual networks are used in generator.8

Key idea of residual network:

use much more layers
layers grouped into groups with similar structure
each group learns small correction to identity function (to
prevent over�tting)

Building block of residual network:

8https://arxiv.org/pdf/1512.03385.pdf
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Application use-case

Peak signal-to-noise ratio (PSNR)
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Application use-case

Peak signal-to-noise ratio (PSNR)

De�nitions

I : original image

K : reconstructed image

m, n: image dimensions
Mean squared error (MSE):

for grayscale images:

MSE =
1

mn

m∑
i=1

n∑
j=1

[I (i , j)− K (i , j)]2

for (r,g,b) images (let c be color channel):

MSE =
1

3mn

m∑
i=1

n∑
j=1

3∑
c=1

[I (i , j , c)− K (i , j , c)]2

MAX : maximum possible pixel value
for B-bit image MAX = 2B − 1
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Application use-case

Peak signal-to-noise ratio (PSNR)

Peak signal-to-noise ratio (PSNR)9

PSNR measures quality of image reconstruction:

PSNR = 10 log10

(
MAX 2

MSE

)

9https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
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Application use-case

Experiments
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Application use-case

Experiments

Super-resolution

Super-resolution: recover higher resolution image from its
low resolution variant.

e.g. from limited device zoom capacity (camera, microscope)

Baseline algorithms:

naive scaling (LRes)
bicubic interpolation (Bicubic)

Results:

PSNR of bicubic is best, but GAN-reconstructed images are
more sharp
and more good-looking for humans (retain high level features).
GAN super-resolution for faces works better than for places
(which are less typical)

46/57



Generative adversarial networks - Victor Kitov

Application use-case

Experiments

Super-resolution outputs (subsampling=2)

47/57



Generative adversarial networks - Victor Kitov

Application use-case

Experiments

Super-resolution outputs (subsampling=4)
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Application use-case

Experiments

Baselines

Denoising: noisy image->clean image

e.g. from measurement imperfection.

Baseline algorithms:

median �lter
non-local means

Results:

PSNR are comparable, but GAN-reconstructed images are
more sharp
and more good-looking for humans (retain high level features).
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Application use-case

Experiments

Non-local means baseline10

u(p) =
1

C (p)

∑
q∈Ω

v(q)f (p, q)

where we used de�nitions:

v(·): original image with noise

u(·): denoised image

p, q: image locations

f (p, q): similarity of pixels p, q by their neighborhoods R(·)
C (p) =

∑
q∈Ω f (p, q)

f (p, q) = e−
1

h2
|B(q)−B(p)|2

B(p) = 1
|R(p)|

∑
i∈R(p) v(i)

10https://en.wikipedia.org/wiki/Non-local_means
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Application use-case

Experiments

Denoising outputs
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Application use-case

Experiments

Deblurring

Deblurring: images blurred and small Gaussian noise added.

e.g. from camera motion.

Baseline algorithms:

Wiener �lter
alternating direction method of multipliers (ADMM)

Results:

PSNR of GAN is lower, but GAN-reconstructed images are
more sharp
and more good-looking for humans (retain high level features).
GAN super-resolution for faces works better than for places
(which are less typical)
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Application use-case

Experiments

Deblurring faces outputs
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Application use-case

Experiments

Deblurring places outputs (not accurate)
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Application use-case

Experiments

Analysis of experiments

Unequal conditions:

Baseline methods use only test image.
GAN uses information from the whole training set.

GANs give smaller PSNR

may be attributed to small training set

GANs give more sharp output

to fool �blurry-based� discriminator
do not fallback to averaging as standard methods
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Application use-case

Experiments

Another possible GAN application: impainting
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Application use-case

Experiments

Analysis of experiments

GANs reproduce small details on images

details learned from other images of the training set.

GAN performance can be improved by training on speci�c
subsets of objects

e.g. train separate face models for di�erent sex, age,
nationality, etc.
especially important for diverse objects such as places.
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