```
Efimov Y.
Matveev I.
```


IRIS IMAGE SEGMENTATION BY PAIRED GRADIENT METHOD WITH PUPIL BOUNDARY REFINEMENT

Efimov Yuriy
Matveev Ivan

Moscow Institute of Physics and Technology
Federal Research Centre "Computing Centre" of
Russian Academy of Sciences

Problem statement
Related work
Proposed solution
Edge detection
Pairs for voting
Accumulator analysis
Polar representation
Optimal path search
Results
Experiments
Conclusion

October 11, 2016

Problem statement

Input:

I - grayscale bitmap sized $W \times H$. Every pixel is encoded in one byte.

Output:

An approximation of iris boundaries in an eye image \mathbf{I} by two circles, i.e. to determine center coordinates and the corresponding radii $(x, y, r)_{\mathrm{P}}$ and $(x, y, r)_{1}$.

Efimov Y.

Matveev I.

Problem statement

Related work
Proposed solution
Edge detection
Pairs for voting
Accumulator analysis
Polar representation
Optimal path search Results

Experiments
Conclusion

Iris detection: related work

1. Daugman's approach

Circular approximation parameters are determined by integro-differential operator:

$$
\max _{\left(r, x_{0}, y_{0}\right)}\left|G_{\sigma}(r) \frac{\partial}{\partial r} \oint_{\left(x_{0}, y_{0}, r_{0}\right)} \frac{I(x, y)}{2 \pi r} d s\right|
$$

2. Wildes' approach and its modifications

Searching for local maxima in the parameter space.
There are modifications, allowing to reduce the computational complexity: gradient-based approaches, randomized algorithms for circle detection, separation of the accumulator parameter space.

3. Active contours

Efimov Y.

Matveev I.

Pupil detection: related work

1. Projection methods

Intensity projection method, gradient projection method, blob detection.
2. Morphological methods

A method of recursive erosion.
3. Hough methodology
4. Contour-based methods

Pupil boundary is considered to be a curve, determined directly by a sequence of pixels and not belonging to any existing class of figures.

```
Efimov Y.
Matveev I.
```


Proposed solution

Input bitmap

\downarrow

A set of edge points

\downarrow
Pairs for a voting prosess
\downarrow

Iris image segmentation

Efimov Y.

Matveev I.

Problem statement

Related work

Proposed solution
Edge detection
Pairs for voting
Accumulator analysis
Polar representation
Optimal path search Results

Experiments
Conclusion

Edge points selection

Efimov Y.

Matveev I.

To detect possible edges in an image Canny operator is applied. In the neighborhood of the selected points gradient components $\mathbf{g}_{x}(x, y)$ and $\mathbf{g}_{\mathbf{y}}(x, y)$ are calculated using Sobel masks and then gradient magnitude $g(x, y)$ and angle $\phi(x, y)$ are defined. A set of edge points $G=\{x, y, g(x, y), \phi(x, y)\}=\{\mathbf{L}, \mathbf{W}\}$ is formed.

Problem statement

Related work

Proposed solution

Edge detection

Pairs for voting
Accumulator analysis Polar representation Optimal path search Results

Paired Gradient method

Main concept:

Let $\mathbf{q}=(x, y)$ be an edge point. Then the selection criteria for a pair $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}\right\}$, corresponding to a hypothetical circle:

$$
\begin{gathered}
\left\|\mathbf{g}\left(\mathbf{q}_{1}\right)\right\|>T_{g} \\
\left\|\mathbf{g}\left(\mathbf{q}_{2}\right)\right\|>T_{g} \\
\angle\left(\mathbf{g}\left(\mathbf{q}_{1}\right), \mathbf{g}\left(\mathbf{q}_{2}\right)\right)=\psi \\
\left\|\mathbf{q}_{1}-\mathbf{q}_{o}\right\|=\left\|\mathbf{q}_{2}-\mathbf{q}_{o}\right\|
\end{gathered}
$$

Efimov Y. Matveev I.

Problem statement

Related work

Proposed solution
Edge detection

Pairs for voting

Accumulator analysis Polar representation Optimal path search Results

Paired Gradient method

If the pair $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}\right\}$ is selected, then the parameters $\mathbf{p}\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)=\left\{x_{c}, y_{c}, r\right\}$ of the correspondong hypothetical circle are calculated as follows:
the coordinates of an interception point \mathbf{q}^{*} for the following lines

$$
\begin{aligned}
& I_{1}=\mathbf{q}_{1}-t_{1} \cdot \mathbf{g}\left(\mathbf{q}_{1}\right), \\
& I_{2}=\mathbf{q}_{2}-t_{2} \cdot \mathbf{g}\left(\mathbf{q}_{2}\right)
\end{aligned}
$$

specify its center $\left(x_{c}, y_{c}\right)$ and the radius can be found as

$$
r=\sqrt{\left(x_{1}-x_{c}\right)^{2}+\left(y_{1}-y_{c}\right)^{2}}
$$

A set of hypothetical circle parameters $P=\left\{x_{c}^{i}, y_{c}^{i}, r^{i}\right\}_{i=1}^{M}$ is formed, where M is the number of selected pairs.

```
Efimov Y.
Matveev I.
```


Circular approximation

```
Efimov Y.
Matveev I.
```


Center search:

The mentioned set $P=\left\{x_{c}^{i}, y_{c}^{i}, r^{i}\right\}_{i=1}^{M}$ is used during the Hough voting process in the accumulator array Q. The zero-initialized array is filled with the center votes $\left\{x_{c}^{i}, y_{c}^{i}\right\}$:

$$
Q(x, y)=\sum_{i=1}^{M} \begin{cases}1, & \text { if }(x, y)=\left(x_{c}^{i}, y_{c}^{i}\right) \\ 0 & \text { otherwise }\end{cases}
$$

An accumulator element, which received the most votes, i.e. the argument maxima $\mathbf{q}_{1}^{*}=\left(x_{c}^{*}, y_{c}^{*}\right)=\operatorname{argmax} Q(x, y)$ is the (x, y)
most probable center position of the circle, approximating the most expressed iris boundary.

Circular approximation

Center search:

Iris image segmentation

Efimov Y.

Matveev I.

Problem statement

Related work
Proposed solution
Edge detection
Pairs for voting
Accumulator analysis
Polar representation
Optimal path search Results

Experiments
Conclusion

Figure: An accumulator array for $\psi=\frac{2 \pi}{3}$

Circular approximation

Noise suppression:

Considering the found eye center position and using the gradient information, a constraint may be introduced for edge points in \mathbf{G} :

$$
\arccos \left(\frac{\mathbf{q} \cdot \mathbf{g}(\mathbf{q})}{|\mathbf{q}| \cdot|\mathbf{g}(\mathbf{q})|}\right)<T_{a}
$$

Efimov Y. Matveev I.

Problem statement

Related work

Proposed solution
Edge detection
Pairs for voting
Accumulator analysis
Polar representation
Optimal path search Results

Circular approximation

Radius detection: To determine the radius a distance histogram $H(r)$ is built:

$$
H(r)=\left|\left\{\mathbf{q}: \mathbf{q}=(x, y) \in \mathbf{G}, \| \mathbf{q}-\mathbf{q}_{1}^{*}| | \in(r-0.5, r+0.5)\right\}\right| .
$$

Its argument maxima corresponds to the sought-for radius r_{1}^{*}.

Efimov Y.
 Matveev I.

Related work

Proposed solution
Edge detection
Pairs for voting
Accumulator analysis
Polar representation
Optimal path search Results

Circular approximation

```
Efimov Y. Matveev I.
```

Approximating the second boundary To detect the second iris boundary limiting constraints are imposed on its inner and outer radii:

$$
\begin{gathered}
r_{\mathrm{P}}>\frac{1}{7} r_{1} \\
r_{\mathrm{P}}<\frac{3}{4} r_{1} \\
r_{\mathrm{P}}>\sqrt{\left(x_{1}-x_{\mathrm{P}}\right)^{2}+\left(y_{1}-y_{\mathrm{P}}\right)^{2}} .
\end{gathered}
$$

Circular approximation

Approximating the second boundary: Values of the original histogram in region $r \in\left[0 ; \frac{1}{7} r_{1}^{*}\right] \cup\left[\frac{3}{4} r_{1}^{*} ; \frac{4}{3} r_{1}^{*}\right]$, are set to zero not to detect the already found iris boundary. New argument maxima corresponds to the second sought-for radius r_{2}^{*}.

Efimov Y. Matveev I.

Proposed solution
Edge detection
Pairs for voting
Accumulator analysis
Polar representation
Optimal path search Results

Experiments
Conclusion

Pupil boundary refinement

Polar representation: A polar transformation is applied to the edge map with the pole in $\left(x_{c}^{*}, y_{c}^{*}\right)$. A narrow zone of the polar representation \mathbf{G}_{p} is considered, where $y \in\left[r_{P}-20 ; r_{P}+20\right]$.

Efimov Y.

Matveev I.

Problem statement

Related work
Proposed solution
Edge detection
Pairs for voting
Accumulator analysis Polar representation
Optimal path search Results

Experiments
Conclusion

Pupil boundary refinement

Circular shortesh path method: Let there be a contour in the polar representation, defined by a sequence of pixels: $S=\left\{\rho\left(\phi_{k}\right)\right\}_{k=1}^{M}$. A cost for the path from (n, ρ_{n}) to (m, ρ_{m}) consists of two components:

$$
\begin{gathered}
C\left(\rho_{n}, \rho_{m}\right)=C_{0}\left(n, \rho_{n}\right)+C_{1}\left(\rho_{n}, \rho_{m}\right) \\
C_{0}\left(n, \rho_{n}\right)=g\left(n, \rho_{n}\right) \\
C_{1}\left(\rho_{n}, \rho_{m}\right)=\left\{\begin{array}{l}
0, \text { if } \rho_{n}=\rho_{m} \\
T_{1}, \text { if }\left|\rho_{n}-\rho_{m}\right|=1 \\
\infty, \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Efimov Y. Matveev I.

Problem statement

Related work
Proposed solution
Edge detection
Pairs for voting
Accumulator analysis Polar representation

Pupil boundary refinement

Circular shortest path method:

Efimov Y.

Matveev I.

Problem statement

Related work

Proposed solution
Edge detection
Pairs for voting
Accumulator analysis
Polar representation
Optimal path search Results

Experiments
Conclusion

Figure: Neighbour points for a circular path.

Pupil boundary refinement

```
Efimov Y. Matveev I.
```

Circular shortest path method: For the given path $S=\left\{\rho_{k}\right\}_{k=1}^{W_{p}}$ the total cost is calculated:

$$
C(S)=\sum_{k=1}^{W_{p}} C\left(\rho_{k}, \rho_{k+1}\right)
$$

Problem statement

Related work

Proposed solution
Edge detection
Pairs for voting
Accumulator analysis
Polar representation
Optimal path search
Results
Experiments
Conclusion

An optimal contour has the minimal total cost:

$$
S^{*}=\underset{S}{\operatorname{argmin}} C(S)
$$

Results

Circular approximation:

Iris image segmentation

Efimov Y.
Matveev I.

Problem statement
Related work
Proposed solution
Edge detection
Pairs for voting
Accumulator analysis
Polar representation Optimal path search Results

Experiments
Conclusion

Results

Pupil boundary refinement:

Iris image segmentation

Efimov Y.
Matveev I.

Problem statement
Related work
Proposed solution
Edge detection
Pairs for voting
Accumulator analysis
Polar representation
Optimal path search Results

Experiments

Conclusion

Incorrect segmentation

Narrowed eyelids

Iris image segmentation

Efimov Y.

Matveev I.

Problem statement

Related work
Proposed solution
Edge detection
Pairs for voting
Accumulator analysis
Polar representation
Optimal path search Results

Experiments
Conclusion

Experiments

Iris image segmentation
 Efimov Y. Matveev I.
 Problem statement

Goals:

- Testing the iris segmentation system on real data.
- Building an error plot for further analysis

Related work

Proposed solution

Edge detection
Pairs for voting
Accumulator analysis Polar representation
Optimal path search Results

Input data format:

Grayscale eye images sized 640×480 pixels (CASIA(20000), ND-IRIS(20000), UBI(1207)).

Experiments

Quality estimation:

- Segmentation result: $\omega=\left\{x_{\mathrm{P}}, y_{\mathrm{P}}, r_{\mathrm{P}}, x_{1}, y_{1}, r_{1}\right\}$.
- Expert markup: $\tilde{\omega}=\left\{\tilde{x}_{P}, \tilde{y}_{\mathrm{P}}, \tilde{r}_{\mathrm{P}}, \tilde{x}_{\mathrm{l}}, \tilde{y}_{1}, \tilde{r}_{1}\right\}$.
- Center detection error: $S_{c}(\omega)=$

$$
\sqrt{\left(x_{P}-\tilde{x}_{P}\right)^{2}+\left(y_{P}-\tilde{y}_{P}\right)^{2}}+\sqrt{\left(x_{1}-\tilde{x}_{1}\right)^{2}+\left(y_{1}-\tilde{y}_{1}\right)^{2}} .
$$

- Radii estimation error: $S_{r}(\omega)=\left|r_{\mathrm{P}}-\tilde{r}_{\mathrm{P}}\right|+\left|r_{1}-\tilde{r}_{\mathrm{I}}\right|$.
- Total error is the sum: $S(\omega)=S_{c}(\omega)+S_{r}(\omega)$.
- Relative errors: $\varepsilon(\omega)=\frac{S(\omega)}{\tilde{r}_{1}}, \varepsilon_{c}(\omega)=\frac{S_{c}(\omega)}{\tilde{\eta}_{1}}$.
- Average relative error: $E=\frac{1}{N} \sum_{i=1}^{N} \varepsilon\left(\omega_{i}\right)$.
- Error distribution histogram:

$$
e(p)=|\{I: \varepsilon(w) \leq p\}|, p \in[0 ; 1] .
$$

Efimov Y.
 Matveev I.

Problem statement

Related work
Proposed solution
Edge detection
Pairs for voting
Accumulator analysis
Polar representation
Optimal path search Results

Analysis

Optimal value for gradient angle ψ

Iris image segmentation

Efimov Y.
 Matveev I.

Problem statement

Related work

Proposed solution
Edge detection
Pairs for voting
Accumulator analysis
Polar representation
Optimal path search
Results

Analysis

Iris image segmentation

Efimov Y.

Matveev I.

A distribution of relative pupil error

Problem statement

Related work
Proposed solution

Edge detection

Pairs for voting
Accumulator analysis
Polar representation
Optimal path search
Results

Experiments

Conclusion

Analysis

Summed relative error $\varepsilon(\omega)$ distribution, \%

$e<5 \%$	$e<10 \%$	$e<15 \%$	$e<20 \%$	$e<25 \%$
32.2	85.33	95.09	98.21	99.02

Center detection relative error $\varepsilon_{c}(\omega)$ distribution, \%

$e_{\mathrm{c}}<5 \%$	$e_{\mathrm{c}}<10 \%$	$e_{\mathrm{c}}<15 \%$	$e_{\mathrm{c}}<20 \%$	$e_{\mathrm{c}}<25 \%$
73.01	97.03	99.44	99.65	99.78

Average relative error E, \%

Matveev I.

Related work
Proposed solution
Edge detection
Pairs for voting
Accumulator analysis
Polar representation
Optimal path search Results

Experiments

	Daugman	Ma et al.	Wildes	Masek	PG+CSP
CASIA	1.19	4.79	5.37	5.15	2.51
NDIRIS	1.10	5.92	6.33	5.59	2.24
Average time, ms					
$\bar{t}, \mathrm{~ms}$	52.31	363.64	379.61	97.52	$\mathbf{2 0 3 . 9}$

Conclusion

```
Efimov Y.
Matveev I.
```

- A system of methods for detecting iris region in eye image is presented.
- The system is implemented in C and Matlab.
- To estimate the overall efficiency, a computational experiment was performed on images from public domain databases.

Iris image segmentation

Efimov Y. Matveev I.

Problem statement

Related work
Proposed solution
Edge detection
Pairs for voting
Accumulator analysis
Polar representation
Optimal path search
Results
Experiments

Conclusion

