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Abstract. Probabilistic topic modeling of text collections is a powerful
tool for statistical text analysis. In this tutorial we introduce a novel
non-Bayesian approach, called Additive Regularization of Topic Models.
ARTM is free of redundant probabilistic assumptions and provides a sim-
ple inference for many combined and multi-objective topic models.
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1 Introduction

Topic modeling is a rapidly developing branch of statistical text analysis [1].
Topic model uncovers a hidden thematic structure of the text collection and finds
a highly compressed representation of each document by a set of its topics. From
the statistical point of view, each topic is a set of words or phrases that frequently
co-occur in many documents. The topical representation of a document captures
the most important information about its semantics and therefore is useful for
many applications including information retrieval, classification, categorization,
summarization and segmentation of texts.

Hundreds of specialized topic models have been developed recently to meet
various requirements coming from applications. For example, some of the models
are capable to discover how topics evolve through time, how they are connected
to each other, how they form topic hierarchies. Other models take into account
additional information such as authors, sources, categories, citations or links
between documents, or other kinds of document labels [2]. They can also be used
to reveal the semantics of non-textual objects connected to the documents such
as images, named entities or document users. Some of the models are focused on
making topics more stable, sparse, robust, and better interpretable by humans.
Linguistically motivated models benefit from syntactic considerations, grouping
words into n-grams, finding collocations or constituent phrases. More ideas and
applications of topic modeling can be found in the survey [3].



A probabilistic topic model defines each topic by a multinomial distribution
over words, and then describes each document with a multinomial distribution
over topics. Most recent models are based on a mainstream topic model LDA,
Latent Dirichlet Allocation [4]. LDA is a two-level Bayesian generative model,
which assumes that topic distributions over words and document distributions
over topics are generated from prior Dirichlet distributions. This assumption
facilitates Bayesian inference due to the fact that the Dirichlet distribution is
a conjugate to the multinomial one. However, the Dirichlet distribution has no
convincing linguistic motivations and conflicts with two natural assumptions
of sparsity: (1) most of the topics have zero probability in a document, and
(2) most of the words have zero probability in a topic. The attempts to provide
sparsity preserving Dirichlet prior lead to overcomplicated models [5,6,7,8,9].
Finally, Bayesian inference complicates the combination of many requirements
into a single multi-objective topic model. The evolutionary algorithms recently
proposed in [10] seem to be computationally infeasible for large text collections.

In this tutorial we present a survey of popular topic models in terms of a novel
non-Bayesian approach — Additive Regularization of Topic Models (ARTM) [11],
which removes the above limitations, simplifies theory without loss of generality,
and reduces barriers to entry into topic modeling research field.

The motivations and essentials of ARTM may be briefly stated as follows.
Learning of a topic model from a text collection is an ill-posed inverse problem
of stochastic matrix factorization. Generally it has an infinite set of solutions.
To choose a better solution we add a weighted sum of problem-oriented regular-
ization penalty terms to the log-likelihood. Then the model inference in ARTM
can be performed by a simple differentiation of the regularizers over model pa-
rameters. We show that many models, which previously required a complicated
inference, can be obtained “in one line” within ARTM. The weights in a linear
combination of regularizers can be adopted during the iterative process. Our ex-
periments demonstrate that ARTM can combine regularizers that improve many
criteria at once almost without a loss of the likelihood.

2 Topic models PLSA and LDA

In this section we describe Probabilistic Latent Sematic Analysis (PLSA) model,
which was historically a predecessor of LDA. PLSA is a more convenient start-
ing point for ARTM because it does not have regularizers at all. We provide
the Expectation-Maximization (EM) algorithm with an elementary explanation,
then describe an experiment on the model data that shows the instability of both
PLSA and LDA models. The non-uniqueness and the instability of the solution
does motivate a problem-oriented additive regularization.

Model assumptions. Let D denote a set (collection) of texts and W denote a set
(vocabulary) of all words from these texts. Note that vocabulary may contain
keyphrases as well, but we will not distinguish them from single words. Each
document d ∈ D is a sequence of nd words (w1, . . . , wnd

) from the vocabularyW .
Each word might appear multiple times in the same document.



Assume that each word occurrence in each document refers to some latent
topic from a finite set of topics T . Text collection is considered to be a sample of
triples (wi, di, ti), i = 1, . . . , n drawn independently from a discrete distribution
p(w, d, t) over a finite probability space W ×D× T . Words w and documents d
are observable variables, while topics t are latent (hidden) variables.

Following the “bag of words” model, we represent each document by a subset
of words d ⊂ W and the corresponding integers ndw, which count how many
times the word w appears in the document d.

Conditional independence is an assumption that each topic generates words
regardless of the document: p(w | t) = p(w | d, t). According to the law of total
probability and the assumption of conditional independence

p(w | d) =
∑

t∈T

p(t | d) p(w | t). (1)

The probabilistic model (1) describes how the collection D is generated from
the known distributions p(t | d) and p(w | t). Learning a topic model is an inverse
problem: to find distributions p(t | d) and p(w | t) given a collection D.

Stochastic matrix factorization. Our problem is equivalent to finding an approx-
imate representation of observable data matrix

F =
(

fwd

)

W×D
, fwd = p̂(w | d) = ndw/nd,

as a product F ≈ ΦΘ of two unknown matrices — the matrix Φ of word proba-

bilities for the topics and the matrix Θ of topic probabilities for the documents:

Φ = (φwt)W×T , φwt = p(w | t), φt = (φwt)w∈W ;
Θ = (θtd)T×D, θtd = p(t | d), θd = (θtd)t∈T .

Matrices F , Φ and Θ are stochastic, that is, their columns fd, φt, θd are non-
negative and normalized representing discrete distributions. Usually the number
of topics |T | is much smaller than both |D| and |W |.

Likelihood maximization. In probabilistic latent semantic analysis (PLSA) [12]
the topic model (1) is learned by the log-likelihood maximization:

ln

n
∏

i=1

p(di, wi) =
∑

d∈D

∑

w∈d

ndw ln p(w | d) +
∑

d∈D

nd ln p(d) → max,

which results in a constrained maximization problem:

L(Φ,Θ) =
∑

d∈D

∑

w∈d

ndw ln
∑

t∈T

φwtθtd → max
Φ,Θ

; (2)

∑

w∈W

φwt = 1, φwt ≥ 0;
∑

t∈T

θtd = 1, θtd ≥ 0. (3)



Algorithm 2.1: The rational EM-algorithm for PLSA.

Input: document collection D, number of topics |T |, initialized Φ, Θ;
Output: Φ, Θ;

1 repeat

2 zeroize nwt, ndt, nt, nd for all d ∈ D, w ∈ W , t ∈ T ;
3 for all d ∈ D, w ∈ d
4 Z :=

∑
t∈T

φwtθtd;
5 for all t ∈ T : φwtθtd > 0

6 increase nwt, ndt, nt, nd by δ = ndwφwtθtd/Z;

7 φwt := nwt/nt for all w ∈ W , t ∈ T ;
8 θtd := ndt/nd for all d ∈ D, t ∈ T ;

9 until Φ and Θ converge;

EM-algorithm. The problem (2), (3) can be solved by an iterative EM-algorithm.
First, the columns of the matrices Φ and Θ are initialized with random distri-
butions. Then two steps (E-step and M-step) are repeated in a loop.

At the E-step the probability distributions for the latent topics p(t | d, w) are
estimated for each word w in each document d using the Bayes’ rule. Auxiliary
variables ndwt are introduced to estimate how many times the word w appears
in the document d with relation to the topic t:

ndwt = ndwp(t | d, w), p(t | d, w) =
φwtθtd

∑

s∈T φwsθsd
. (4)

At the M-step summation of ndwt values over d, w, t provides empirical
estimates for the unknown conditional probabilities:

φwt =
nwt

nt

, nwt =
∑

d∈D

ndwt, nt =
∑

w∈W

nwt,

θtd =
ndt

nd

, ndt =
∑

w∈d

ndwt, nd =
∑

t∈T

ndt,

which can be rewritten in a shorter notation using the proportionality sign ∝:

φwt ∝ nwt, θtd ∝ ndt. (5)

Equations (4), (5) define a necessary condition for a local optimum of the
problem (2), (3). In the next section we will prove this for a more general case.

The system of equations (4), (5) can be solved by various numerical methods.
The simple iteration method leads to a family of EM-like algorithms, which may
differ in implementation details. For example, Algorithm 2.1 avoids storing the
three-dimensional array ndwt by incorporating the E-step inside the M-step.

Latent Dirichlet Allocation. In LDA parameters Φ,Θ are constrained to avoid
overfitting [4]. LDA assumes that the columns of the matrices Φ and Θ are
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Fig. 1. Errors in restoring the matrices Φ, Θ and ΦΘ over hyperparameter α (β = 0.1).

drawn from the Dirichlet distributions with positive vectors of hyperparameters
β = (βw)w∈W and α = (αt)t∈T respectively.

Learning algorithms for LDA generally fall into two categories — sampling-
based algorithms [13] or variational algorithms [14]. They can be considered
also as EM-like algorithms with modified M-step [15]. The following is the most
simple and frequently used modification:

φwt ∝ nwt + βw, θtd ∝ ndt + αt. (6)

This modification has the effect of smoothing, since it increases small probabil-
ities and decreases large probabilities.

The non-uniqueness problem. The likelihood (2) depends on the product ΦΘ, not
on separate matrices Φ and Θ. Therefore, for any linear transformation S such
that matrices Φ′ = ΦS and Θ′ = S−1Θ are stochastic, their product Φ′Θ′ = ΦΘ
gives the same value of the likelihood. The transformation S depends on a ran-
dom initialization of the EM-algorithm. Thus, learning a topic model is an ill-
posed problem whose solution is not unique and hence is not stable.

The following experiment on the model data verifies the ability of PLSA
and LDA to restore true matrixes Φ,Θ. The collection was generated with the
size parameters |W | = 1000, |D| = 500, |T | = 30. The lengths of the docu-
ments nd ∈ [100, 600] were chosen randomly. Columns of the matrices Φ,Θ were
drawn from the symmetric Dirichlet distributions with parameters β, α respec-
tively. The differences between the restored distributions p̂(i | j) and the model
ones p(i | j) were measured by the average Hellinger distance both for the ma-
trices Φ,Θ and for their product:

DΦ = H(Φ̂, Φ); DΘ = H(Θ̂, Θ); DΦΘ = H(Φ̂Θ̂, ΦΘ);

H(p̂, p) =
1

m

m
∑

j=1

(

1

2

n
∑

i=1

(

√

p̂(i | j)−
√

p(i | j)
)2

)
1

2

.



Both PLSA and LDA restore Φ and Θ much worse than their product, Fig. 1.
The error are less for sparse original matrices Φ,Θ. LDA did not perform well
even when the same α, β are used for both generating and restoring stages.

This experiment shows that the Dirichlet regularization can not ensure a sta-
ble solution. Stronger regularizer or combination of regularizers should be used.

Also we conclude that PLSA model being free of any regularizers is the most
convenient starting point for multi-objective problem-oriented regularization.

3 Additive regularization for topic models

In this section we introduce the additive regularization framework and prove
a general equation for a regularized M-step in the EM-algorithm.

Consider r objectives Ri(Φ,Θ), i = 1, . . . , r, called regularizers, which have
to be maximized together with the likelihood (2). According to a standard scalar-
ization approach to the multi-objective optimization we maximize a linear combi-
nation of the objectives L and Ri with nonnegative regularization coefficients τi:

R(Φ,Θ) =

r
∑

i=1

τiRi(Φ,Θ), L(Φ,Θ) +R(Φ,Θ) → max
Φ,Θ

. (7)

Topic t is called overregularized if nwt + φwt
∂R

∂φwt
≤ 0 for all words w ∈W .

Document d is called overregularized if ndt + θtd
∂R
∂θtd

≤ 0 for all topics t ∈ T .

Theorem 1. If the function R(Φ,Θ) is continuously differentiable and (Φ,Θ)
is the local minimum of the problem (7), (3), then for any topic t and any doc-

ument d that are not overregularized the system of equations holds:

ndwt = ndw

φwtθtd
∑

s∈T φwsθsd
; (8)

φwt ∝

(

nwt + φwt

∂R

∂φwt

)

+

; nwt =
∑

d∈D

ndwt; (9)

θtd ∝

(

ndt + θtd
∂R

∂θtd

)

+

; ndt =
∑

w∈d

ndwt; (10)

where (z)+ = max{z, 0}.

Note 1. Equation (9) gives φt = 0 for overregularized topics t. Equation (10)
gives θd = 0 for overregularized documents d. Overregularization is an important
mechanism, which helps to exclude insignificant topics and documents out of
the topic model. Regularizers that encourage topic exclusions may be used to
optimize the number of topics. A document may be excluded if it is too short or
does not contain topical words.

Note 2. The system of equations (8)–(10) defines a regularized EM-algorithm.
It keeps E-step from (4) and redefines M-step by regularized equations (9), (10).
If R(Φ,Θ) = 0 then the regularized topic model is reduced to the usual PLSA.



Proof. For the local minimum (Φ,Θ) of the problem (7), (3) the KKT conditions
(see Appendix A) can be written as follows:

∑

d

ndw

θtd
p(w | d)

+
∂R

∂φwt

= λt − λwt; λwt ≥ 0; λwtφwt = 0.

Let us multiply both sides of the first equation by φwt, reveal the auxiliary
variable ndwt from (8) in the left-hand side and sum it over d:

φwtλt =
∑

d

ndw

φwtθtd
p(w | d)

+ φwt

∂R

∂φwt

= nwt + φwt

∂R

∂φwt

.

An assumption that λt ≤ 0 contradicts the condition that topic t is not
overregularized. Then λt > 0, φwt ≥ 0, the left-hand side is nonnegative, thus
the right-hand side is nonnegative too, consequently,

φwtλt =

(

nwt + φwt

∂R

∂φwt

)

+

. (11)

Let us sum both sides of this equation over all w ∈W :

λt =
∑

w∈W

(

nwt + φwt

∂R

∂φwt

)

+

. (12)

Finally, we obtain (9) by expressing φwt from (11) and (12).

Equations for θtd can be derived analogously thus finalizing the proof.

The EM-algorithm for learning regularized topic models can be implemented
by easy modification of any EM-like algorithm at hand. In Algorithm 2.1 only
steps 7 and 8 are to be modified according to equations (9) and (10).

4 A survey of regularizers for topic models

In this section we revisit some of the well known topic models and show
that ARTM significantly simplifies their inference and modifications. We pro-
pose an alternative interpretation of LDA as a regularizer that minimizes
KL-divergence with a fixed distribution. Then we revisit topic models for
sparsing domain-specific topics, smoothing background (common lexis) topics,
semi-supervised learning, number of topics optimization, topics decorrelation,
topic coherence maximization, documents linking, and document classification.
We also consider the problem of combining regularizers and introduce the notion
of regularization trajectory.



Smoothing regularization and LDA. Let us minimize the KL-divergence (see
Appendix B) between the distributions φt and a fixed distribution β = (βw)w∈W ,
and the KL-divergence between θd and a fixed distribution α = (αt)t∈T :

∑

t∈T

KLw(βw‖φwt) → min
Φ
,

∑

d∈D

KLt(αt‖θtd) → min
Θ

.

After summing these criteria with coefficients β0, α0 and removing constants
we have the regularizer

R(Φ,Θ) = β0
∑

t∈T

∑

w∈W

βw lnφwt + α0

∑

d∈D

∑

t∈T

αt ln θtd → max .

The regularized M-step (9) and (10) gives us two equations

φwt ∝ nwt + β0βw, θtd ∝ ndt + α0αt,

which are exactly the same as the M-step (6) in LDA model with hyperparameter
vectors β = β0(βw)w∈W and α = α0(αt)t∈T of the Dirichlet distributions.

The non-Bayesian interpretation of the smoothing regularization in terms of
KL-divergence is simple and natural. Moreover, it avoids complicated inference
techniques such as Variational Bayes or Gibbs Sampling.

Sparsing regularization. The opposite regularization strategy is to maximize KL-
divergence between φt, θd and fixed distributions β, α:

R(Φ,Θ) = −β0
∑

t∈T

∑

w∈W

βw lnφwt − α0

∑

d∈D

∑

t∈T

αt ln θtd → max .

For example, to find a sparse distributions φwt with lower entropy we may choose
the uniform distribution βw = 1

|W | , which is known to have the largest entropy.

The regularized M-step (9) and (10) gives equations that differ from the
smoothing equations only in the sign of the parameters β, α:

φwt ∝
(

nwt − β0βw
)

+
, θtd ∝

(

ndt − α0αt

)

+
.

The idea of entropy-based sparsing was originally proposed in the dynamic
PLSA for video processing tasks [16] to produce sparse distributions of topics
over time. The Dirichlet prior conflicts with sparsing assumption, which leads
to sophisticated sparse LDA models [5,6,7,8,9]. Simple and natural sparsing is
possible only by abandoning the Dirichlet prior assumption.

Combining smoothing and sparsing. In modeling a multidisciplinary text collec-
tion topics should contain domain-specific words and be free of common lexis
words. To learn such a model we suggest to split the set of topics T into two
subsets: sparse domain-specific topics S and smoothed background topics B.
Background topics should be close to a fixed distribution over words βw and
should appear in all documents. The model with background topics B is an
extension of robust models [17,18], which used a single background distribution.



Semi-supervised learning. Additional training data can further improve quality
and interpretability of a topic model. Assume that we have a prior knowledge,
stating that each document d from a subset D0 ⊆ D is associated with a subset
of topics Td ⊂ T . Analogically, assume that each topic t ∈ T0 contains a subset
of words Wt ⊂W . Consider a regularizer that maximizes the total probability
of topics in Td and the total probability of words in Wt:

R(Φ,Θ) = β0
∑

t∈T0

∑

w∈Wt

φwt + α0

∑

d∈D0

∑

t∈Td

θtd → max .

The regularized M-step (9) and (10) gives yet another sort of smoothing:

φwt ∝ nwt + β0φwt, t ∈ T0, w ∈Wt; θtd ∝ ndt + α0θtd, d ∈ D0, t ∈ Td.

Sparsing regularization of topic probabilities for the words p(t | d, w) is motivated
by a natural assumption that each word in a text is usually related to one topic.
To meet this requirement we use the entropy-based sparsing and maximize the
average KL-divergence between p(t | d, w) and uniform distribution over topics:

∑

d,w

ndw KL
(

1
|T |

∥

∥ p(t | d, w)
)

→ min
Φ,Θ

;

R(Φ,Θ) =
τ

|T |

∑

d,w

ndw

∑

t∈T

ln

∑

s∈T φwsθsd

φwtθtd
→ max .

The regularized M-step (9) and (10) gives

φwt ∝
(

nwt + τ
(

nwt −
1
|T |nw

))

+
, θtd ∝

(

ndt + τ
(

ndt −
1
|T |nd

))

+
.

These equations mean that φwt decreases (and may eventually turn to zero)
if the word w occurs in the topic t less frequently than in the average over all
topics. Analogously, θtd decreases (and may also turn to zero) if the topic t occurs
in the document d less frequently than in the average over all topics.

Elimination of insignificant topics can be done by entropy-based sparsing of the
global distribution over topics p(t) =

∑

d p(d)θtd. To do this we maximize the
KL-divergence between p(t) and the uniform distribution over topics:

R(Θ) = τ
∑

t∈T

ln
∑

d∈D

p(d)θtd → max .

The regularized M-step (10) gives

θtd ∝
(

ndt − τ
nd

nt

θtd

)

+
.

This regularizer works as a row sparser for the matrix Θ because of nt counter
in the denominator. If nt is small then the big values are subtracted from all
elements ndt of the t-th row of the matrix Θ. If all elements of a row will be



set to zero then the corresponding topic t could never be used, i.e. it will be
eliminated from the model. We can decrease the current number of active topics
gradually during EM-iterations by increasing a coefficient τ until some of the
quality measures will not deteriorate.

Note that this approach to the number of topics optimization is much sim-
pler than the state-of-the-art Bayesian techniques such as Hierarchical Dirichlet
Process [19] and Chinese Restaurant Process [20].

Covariance regularization for topics. Reducing the overlapping between the
topic-word distributions is known to make the learned topics more inter-
pretable [21]. A regularizer that minimizes covariance between vectors φt,

R(Φ) = −τ
∑

t∈T

∑

s∈T\t

∑

w∈W

φwtφws → max,

leads to the following equation of the M-step:

φwt ∝
(

nwt − τφwt

∑

s∈T\t

φws

)

+
.

That is, for each word w the highest probabilities φwt will increase from
iteration to iteration, while small probabilities will decrease, and may eventually
turn into zeros. Therefore, this regularizer also stimulates sparsity. Besides, it has
another useful property, which is to group stop-words into separate topics [21].

Covariance regularization for documents. Sometimes we possess an information
that some documents are likely to share similar topics. For example, they may
fall into the same category or one document may have a reference or a link to
the other. Making use of this information in terms of the regularizer, we get:

R(Θ) = τ
∑

d,c

ndc

∑

t∈T

θtdθtc → max,

where ndc is the weight of the link between documents d and c. A similar LDA-JS
model is described in [22], which is based on the minimization of Jensen–Shannon
divergence between θd and θc, rather than on the covariance maximization.

According to (10), the equation for θtd in the M-step turns into

θtd ∝ ndt + τθtd
∑

c∈D

ndcθtc.

Thus the iterative process adjusts probabilities θtd so that they become closer
to θtc for all documents c, connected with d.

Coherence maximization. A topic is called coherent if the most frequent words
from this topic typically appear nearby in the documents (either in the training
collection, or in some external corpus like Wikipedia). An average topic coherence
is known to be a good measure of interpretability of a topic model [23].



Consider a regularizer, which augments probabilities of coherent words [24]:

R(Φ) = τ
∑

t∈T

ln
∑

u,v∈W

Cuvφutφvt → max,

where Cuv = Nuv

[

PMI(u, v) > 0
]

is the co-occurrence estimate of word pairs

(u, v) ∈ W 2, pointwise mutual information PMI(u, v) = ln |D|Nuv

NuNv

is defined
through document frequencies: Nuv is the number of documents that contain
both words u, v in a sliding window of ten words, Nu is the number of docu-
ments that contain at least one occurrence of the word u.

Note that there is no common approach to the coherence optimization in the
literature. Another coherence optimizer was proposed in [25] for LDA model and
Gibbs Sampling algorithm with more complicated motivations through a gener-
alized Polya urn model and a more complex heuristic estimate for Cwv. Again,
this regularizer can be much easier reformulated in terms of ARTM.

The classification regularizer. Let C be a finite set of classes. Suppose each docu-
ment d is labeled by a subset of classes Cd ⊂ C. The task is to infer a relationship
between classes and topics, improve a topic model by using labels information,
and to learn a decision rule to classify new documents. Common discrimina-
tive approaches such as SVM or Logistic Regression usually give unsatisfactory
results on large text collections with a big number of unbalanced and interde-
pendent classes. Probabilistic topic models can benefit in this situation [2].

Recent research papers provide various examples of document labeling.
Classes may refer to text categories [2,26], authors [27], time periods [28,16],
cited documents [22], cited authors [29], users of documents [30]. Many special-
ized models has been developed for these and other cases, more information can
be found in surveys [3,2]. All these models fall into a small number of types that
can be easily expressed in terms of ARTM. Below we consider one of the most
general topic model for document classification.

Let us expand the probability space to the set D ×W × T × C and assume
that each word w in each document d is not only related to a topic t ∈ T , but
also to a class c ∈ C. To classify documents we model a distribution p(c | d)
over classes for each document d. As in the Dependency LDA topic model [2],
we assume that p(c | d) is expressed in terms of distributions p(c | t) = ψct and
p(t | d) = θtd in a way, similar to the basic topic model (1):

p(c | d) =
∑

t∈T

ψctθtd,

where Ψ = (ψct)C×T is a new model parameters matrix. Our regularizer minimize
KL-divergence between the probability model of classification p(c | d) and the

empirical frequency mdc = nd
[c∈Cd]
|Cd|

of classes in the documents:

R(Ψ,Θ) = τ
∑

d∈D

∑

c∈C

mdc ln
∑

t∈T

ψctθtd → max .



The problem is still solved via EM-like algorithms. In addition to (4), the
E-step estimates conditional probabilities p(t | d, c) and auxiliary variables mdct:

mdct = mdcp(t | d, c), p(t | d, c) =
ψctθtd

∑

s∈T ψcsθsd
.

In the M-step φwt are estimated from (5), the estimates for ψct are anal-
ogous to φwt, the estimates for θtd accumulate counters of words and classes
within the documents:

ψct ∝ mct, mct =
∑

d∈D

mdct; θtd ∝ ndt + τmdt, mdt =
∑

c∈C

mdct.

Additional regularizers for Ψ can be used to control sparsity.

Label regularization improves classification for multi-label classification problems
with unbalanced classes [2] by minimizing KL-divergence between the model
distribution p(c) over classes and the empirical frequencies of classes p̂c observed
in the training data:

R(Ψ) = τ
∑

c∈C

p̂c ln p(c) → max; p(c) =
∑

t∈T

ψctp(t), p(t) =
nt

n
.

The formula for the M-step is therefore as follows:

ψct ∝ mct + τ p̂c
ψctnt

∑

s∈T ψcsns

.

Regularization trajectory. A linear combination of multiple regularizers Ri de-
pends on regularization coefficients τi, which require a special handling in prac-
tice. A similar problem is efficiently solved in ElasticNet algorithm, which com-
bines L1 and L2-regularizers for regression and classification tasks [31]. In topic
modeling there are far more various regularizers and they can influence each
other in a non-trivial way. Our experiments show that some regularizers may
worsen the convergence if they are activated too early or too abruptly. Therefore
our recommendation is to choose the regularization trajectory experimentally.

5 Quality measures for topic models

The accuracy of a topic model p(w | d) on the collectionD is commonly evaluated
in terms of perplexity closely related to the likelihood

P(D, p) = exp
(

−
1

n
L(Φ,Θ)

)

= exp

(

−
1

n

∑

d∈D

∑

w∈d

ndw ln p(w | d)

)

.

The hold-out perplexity P(D′, pD) of the model pD trained on the collec-
tion D is evaluated on the test set of documents D′, which does not over-
lap with D. In our experiments we split the collection randomly so that



|D| : |D′| = 10 : 1. Each testing document d is further randomly split into
two halves: the first one is used to estimate parameters θd, and the second one
is used in the perplexity evaluation. The words in the second halves that did not
appear in D are ignored. Parameters φt are estimated from the training set.

The sparsity of a model is measured by the percent of zero elements in ma-
trices Φ and Θ. For the models that separate domain-specific topics S and back-
ground topics B we estimate sparsity over domain-specific topics S only.

The high ratio of background words over document collection

BackgroundRatio =
1

n

∑

d∈D

∑

w∈d

∑

t∈B

p(t | d, w)

may indicate the model degradation as a result of excessive sparsing or topics
elimination and can be used as a stopping criterion for sparsing.

The interpretability of a topic model is evaluated indirectly by coherence,
which is known to correlate well with human interpretability [32,23,25]. The
coherence of a topic is defined as the pointwise mutual information averaged
over all pairs of words within the k most probable words of the topic t:

PMIt =
2

k(k − 1)

k−1
∑

i=1

k
∑

j=i

PMI(wi, wj)

where wi is the i-th word in the list of φwt, w ∈ W , sorted in descending order.
Coherence of a topic model is defined as average PMIt over all domain-specific
topics t ∈ S. In most papers the value k is fixed to 10. Due to a particular im-
portance of the topic coherence we have also examined two additional measures:
the coherence for k = 100, and the coherence for the topic kernels.

We define the kernel of each topic as a set of words that distinguish this topic
from other topics: Wt = {w : p(t |w) > δ}. In our experiments we set δ = 0.25.
We suggest that well interpretable topic must have a reasonable kernel size |Wt|
about 20–200 words and a high values of topic purity and contrast :

Purityt =
∑

w∈Wt

p(w | t); Contrastt =
1

|Wt|

∑

w∈Wt

p(t |w).

We define the corresponding measures of the overall topic model (kernel size,
purity and contrast) by averaging over all domain-specific topics t ∈ S.

6 Experiments with combining regularizers

We are going to demonstrate ARTM approach in practice by combining reg-
ularizers for sparsing, smoothing, topics decorrelation, and number of topics
optimization. Our objective is to build a highly sparse topic model with a bet-
ter interpretability of topics, and at the same time to extract stop-words and
common lexis words. Thus, we aim to improve several quality measures with no
significant loss of the likelihood or perplexity.
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Fig. 2. Comparing PLSA (grey) vs. ARTM
with sparsing, smoothing, and decorrela-
tion (black).
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Fig. 3. Comparing PLSA (grey) vs. ARTM
with sparsing, smoothing, decorrelation,
and topics elimination (black).

Text collection. In our experiments we use the NIPS dataset, which contains
|D| = 1566 English articles from the Neural Information Processing Systems
conference. The length of the collection in words is n ≈ 2.3 ·106. The vocabulary
size is |W | ≈ 1.3 · 104. The testing set has |D′| = 174 documents.

In the preparation step we used BOW toolkit [33] to perform changing to low-
case, punctuation elimination, and stop-words removal.

In all the experiments the number of iterations was set to 100, and the number
of topics was set to |T | = 100 with |B| = 10 background topics.

Experimental results. Figures 2–3 present quality measures of the topic model
as a function of the iteration step. In each figure we compare two models, PLSA
being shown with grey lines and ARTM with black lines.



Quality measures are shown in four charts, stack on top of each other in one
column with synchronized horizontal axes. Top chart: perplexity on the left-hand
axis, and sparsity of matrices Φ,Θ on the right-hand axis. Second chart: number
of topics on the left-hand axis, and ratio of background words on the right-hand
axis. Third chart: kernel size on the left-hand axis, and contrast and purity
on the right-hand axis. Bottom chart: kernel coherence on the left-hand axis,
and top10 and top100 coherence on the right-hand axis.

ARTM allows to use regularizers in any combination. Therefore, we explore
how various combinations of regularizer influence different quality measures.

PLSA and LDA have performed similarly by all measures: perplexity is
about 1900; sparsity is 0%; kernel size is 80–100 words; purity is 12%; contrast
is 43%; coherence top10: 0.07, top100: 0.12, kernel: 0.9.

In ARTM we augment the regularization coefficient for sparsing gradually
from the 10-th iteration. An earlier or a more abrupt sparsing may lead to
perplexity deterioration. The gradual sparsing results in a highly sparse Φ ma-
trix (98% of zeros) and Θ matrix (85% of zeros), while the perplexity becomes
slightly worse. We smooth the background topics from the first iteration using
the uniform distribution βw = 1/|W | and parameters α = 0.8, β = 0.1. Using
a non-uniform distribution βw = nw/n yields similar results.

The decorrelation regularizer works well if activated from the very begin-
ning. It does not change the perplexity significantly, and improves purity and
coherence. Contrast and kernel size remain the same. However, the sparsity of Φ
stays at 40%, which apparently is not good enough, and Θ does not get sparse at
all. The combination of sparsing, smoothing and decorrelation provides the best
results, shown in Fig. 2. Notice that in all experiments kernel coherence is con-
siderably higher than top10 and top100 coherence.

The sparsing regularizer for insignificant topics elimination turned out to be
in conflict with decorrelation. Therefore we apply decorrelation at even itera-
tions, and topics elimination at odd iterations. In our experiments the removal
of topics begins to deteriorate the model perplexity when the number of topics
becomes less than 60, Fig. 3.

7 Conclusions

This tutorial gives a brief survey of topic models from a new non-Bayesian view-
point which we call ARTM — Additive Regularization of Topic Models. ARTM
makes topic models easy to design, easy to infer, and easy to explain. Many
topic models are based on stochastic matrix factorization — an ill-posed inverse
problem whose solution is non-unique and instable. The goal of regularization
is to reduce a potentially infinite set of solutions, and to select a better one,
which satisfies our additional requirements. These requirements can be formal-
ized through a maximization of a weighted sum of regularizers, differentiable
with respect to the parameters of the model. The EM-algorithm with a modi-
fied M-step can be used to solve the optimization problem. Our interpretation
of the EM-algorithm is also nonprobabilistic. We consider the EM-algorithm as



a simple iteration method for solving a system of equations that defines a neces-
sary conditions of the local optimum. Problems of a numerical convergence and
regularization trajectories are left beyond the scope of this paper.
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Appendix A. The Karush–Kuhn–Tucker (KKT) conditions

Consider the following nonlinear optimization problem:

f(x) → max
x

; gi(x) ≥ 0, i = 1, . . . ,m; hj(x) = 0, j = 1, . . . , k.

Suppose that the objective function f : Rn → R and the constraint functions
gi : R

n → R and hj : R
n → R are continuously differentiable at a point x∗. If x∗

is a local maximum that satisfies some regularity conditions (which are always
true if gi and hj are linear functions), then there exist constants µi, i = 1, . . . ,m
and λj , j = 1, . . . , k, called KKT multipliers, such that

∂

∂x

(

f(x) +

m
∑

i=1

µigi(x) +

k
∑

j=1

λjgj(x)

)

= 0; (stationarity)

gi(x) ≥ 0; hj(x) = 0; (primal feasibility)

µi ≥ 0; (dual feasibility)

µigi(x) = 0. (complementary slackness)

Appendix B. The Kullback–Leibler divergence

The Kullback–Leibler divergence or relative entropy is a non-symmetric measure
of the difference between probability distributions P = (pi)

n
i=1 and Q = (qi)

n
i=1:

KL(P‖Q) ≡ KLi(pi‖qi) =
n
∑

i=1

pi ln
pi
qi
.

From the informational point of view, KL(P‖Q) is a measure of the informa-
tion lost when Q is used to approximate P . KL-divergence measures the expected
number of extra bits required to code samples from P when using a code based
on Q, rather than using a code based on P . Typically P represents the empirical
distribution of data, Q represents a model or approximation of P .

The KL-divergence is always non-negative.
KL(P‖Q) = 0 if and only if P = Q.
The KL-divergence minimization is equivalent to the likelihood maximization

of a model distribution Q(α) over parameter vector α:

KL(P‖Q(α)) =

n
∑

i=1

pi ln
pi

qi(α)
→ min

α
⇐⇒

n
∑

i=1

pi ln qi(α) → max
α

.


