Deep Learning Concepts

Sergey Ivanov (617)

qbrick@mail.ru

September 30, 2019

1 Deep Learning

- Basic idea

■ Supervised learning
■ Unsupervised learning

Deep Learning

Basic idea

Key principle

Suppose we want to find some function $y(x)$.

Concept of learning

1 construct some model $y=f(x, \theta)$ using basic building blocks

Key principle

Suppose we want to find some function $y(x)$.

Concept of learning

1 construct some model $y=f(x, \theta)$ using basic building blocks
2 select some differentiable scalar criterion to optimize $L(f)$

Key principle

Suppose we want to find some function $y(x)$.
Concept of learning
1 construct some model $y=f(x, \theta)$ using basic building blocks
2 select some differentiable scalar criterion to optimize $L(f)$
3 select optimization procedure (i.e. gradient descent)

Key principle

Suppose we want to find some function $y(x)$.

Concept of learning

1 construct some model $y=f(x, \theta)$ using basic building blocks
2 select some differentiable scalar criterion to optimize $L(f)$
3 select optimization procedure (i.e. gradient descent)
4 solve $\theta^{*}=\min _{\theta} L(f)$

Neurons

Neurons

$$
\text { input: } x \in\{0,1\}^{n}
$$

Neurons

input: $x \in\{0,1\}^{n}$
parameters: $w \in \mathbb{R}^{n}, b \in \mathbb{R}$

Neurons

input: $x \in\{0,1\}^{n}$
parameters: $w \in \mathbb{R}^{n}, b \in \mathbb{R}$ $1 i$-th signal: $w_{i} x_{i}$

Neurons

input: $x \in\{0,1\}^{n}$
parameters: $w \in \mathbb{R}^{n}, b \in \mathbb{R}$
II i-th signal: $w_{i} x_{i}$
2 accumulation: $\sum_{i} w_{i} x_{i}$

Neurons

input: $x \in\{0,1\}^{n}$
parameters: $w \in \mathbb{R}^{n}, b \in \mathbb{R}$
II i-th signal: $w_{i} x_{i}$
2 accumulation: $\sum_{i} w_{i} x_{i}$
3 output: $\sum_{i} w_{i} x_{i}>b$

Artificial neurons

$$
y(x)=\mathbb{I}[\langle w, x\rangle-b>0]
$$

Artificial neurons

$$
y(x)=\mathbb{I}[\langle w, x\rangle-b>0]
$$

Artificial neurons

$$
y(x)=\mathbb{I}[\langle w, x\rangle-b>0]
$$

General idea

Everything discrete can be smoothed!

Artificial neurons

$$
y(x)=\sigma(\langle w, x\rangle-b)
$$

General idea

Everything discrete can be smoothed!
Sigmoid function:

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

Fully-connected layer

Standard building block for neural networks:

$$
y(x)=\sigma(W x-b)
$$

REALITY

Fully-connected layer

Standard building block for neural networks:

$$
y(x)=\sigma(W x-b)
$$

REALITY

(우) universal approximation properties!

Fully-connected layer

Standard building block for neural networks:

$$
y(x)=\sigma(W x-b)
$$

MODEL

REALITY

(ㅇ) universal approximation properties!
(5) if there is infinite number of neurons...

Fully-connected layer

Standard building block for neural networks:

$$
y(x)=\sigma(W x-b)
$$

MODEL
REALITY

(3) universal approximation properties!
(5i) if there is infinite number of neurons...
(o) stack more layers!

Fully-connected layer

Standard building block for neural networks:

$$
y(x)=\sigma(W x-b)
$$

MODEL

REALITY

(o) universal approximation properties!
(5i) if there is infinite number of neurons...
(3) stack more layers!
(5) gradient vanishing / exploding problem!

Stacking a lot of layers

Stacking a lot of layers

Residual connections

$$
y=x+\sigma(W x-b)
$$

Stacking a lot of layers

Residual connections

$$
y=x+\sigma(W x-b)
$$

Layer normalization

$$
\mu=\frac{1}{m} \sum_{i}^{n} x_{i} \quad s^{2}=\frac{1}{m} \sum_{i}^{n}\left(x_{i}-\mu\right) \quad y=(x-\mu) / s
$$

Typical issues

■ input x may have some complex structure: how to convert it to vector in \mathbb{R}^{d} ?

Typical issues

■ input x may have some complex structure: how to convert it to vector in \mathbb{R}^{d} ?

- categorical features: one-hot encoding

Typical issues

■ input x may have some complex structure: how to convert it to vector in \mathbb{R}^{d} ?

- categorical features: one-hot encoding
- images: convolutional layers + pooling (CNN)

Typical issues

■ input x may have some complex structure: how to convert it to vector in \mathbb{R}^{d} ?

- categorical features: one-hot encoding
- images: convolutional layers + pooling (CNN)
- sequence: recurrent layers (RNN, LSTM, GRU)

Typical issues

■ input x may have some complex structure: how to convert it to vector in \mathbb{R}^{d} ?

- categorical features: one-hot encoding
- images: convolutional layers + pooling (CNN)
- sequence: recurrent layers (RNN, LSTM, GRU)

■ raw audio: ?!?

Typical issues

■ input x may have some complex structure: how to convert it to vector in \mathbb{R}^{d} ?

- categorical features: one-hot encoding
- images: convolutional layers + pooling (CNN)
- sequence: recurrent layers (RNN, LSTM, GRU)
- raw audio: ?!?

■ output y may have some complex structure: how to build the model?

Typical issues

■ input x may have some complex structure: how to convert it to vector in \mathbb{R}^{d} ?

- categorical features: one-hot encoding
- images: convolutional layers + pooling (CNN)
- sequence: recurrent layers (RNN, LSTM, GRU)
- raw audio: ?!?
- output y may have some complex structure: how to build the model?
- no or little data available, how to choose criterion?

Typical issues

- input x may have some complex structure: how to convert it to vector in \mathbb{R}^{d} ?
- categorical features: one-hot encoding
- images: convolutional layers + pooling (CNN)
- sequence: recurrent layers (RNN, LSTM, GRU)
- raw audio: ?!?
- output y may have some complex structure: how to build the model?
- no or little data available, how to choose criterion?
- uninterpretable («black box» model)

Deep Learning

Supervised learning

Supervised learning

Supervised learning

Supervised learning

Let $\left(x_{i}, y_{i}\right)$ be our data. $x_{i} \in \mathbb{R}^{D}$

1 stack some FC layers and get high-level representation $z(x) \in \mathbb{R}^{d}$

Supervised learning

Let (x_{i}, y_{i}) be our data. $x_{i} \in \mathbb{R}^{D}$

1 stack some FC layers and get high-level representation $z(x) \in \mathbb{R}^{d}$
2 choose final decision rule $\hat{y}(z)$.

Supervised learning

Let $\left(x_{i}, y_{i}\right)$ be our data. $x_{i} \in \mathbb{R}^{D}$

1 stack some FC layers and get high-level representation $z(x) \in \mathbb{R}^{d}$
2 choose final decision rule $\hat{y}(z)$.
3 choose loss function $\operatorname{Loss}(y, \hat{y})$

Supervised learning

Let $\left(x_{i}, y_{i}\right)$ be our data. $x_{i} \in \mathbb{R}^{D}$

1 stack some FC layers and get high-level representation $z(x) \in \mathbb{R}^{d}$
2 choose final decision rule $\hat{y}(z)$.
3 choose loss function $\operatorname{Loss}(y, \hat{y})$
$4 L(f)=\frac{1}{N} \sum_{i} \operatorname{Loss}\left(y_{i}, \hat{y}\left(z\left(x_{i}\right)\right)\right)$

Final decision rules

Here $z \in \mathbb{R}^{d}$ is high-level representation (outputs from neurons on final layer).
$\square y \in \mathbb{R}$

Final decision rules

Here $z \in \mathbb{R}^{d}$ is high-level representation (outputs from neurons on final layer).
$\square y \in \mathbb{R}$

- Linear layer: $\hat{y}=\langle w, z\rangle+b$

Final decision rules

Here $z \in \mathbb{R}^{d}$ is high-level representation (outputs from neurons on final layer).
$\square y \in \mathbb{R}$

- Linear layer: $\hat{y}=\langle w, z\rangle+b$
- $y \in[0,1]$

Final decision rules

Here $z \in \mathbb{R}^{d}$ is high-level representation (outputs from neurons on final layer).
$\square y \in \mathbb{R}$

- Linear layer: $\hat{y}=\langle w, z\rangle+b$
- $y \in[0,1]$
- Linear layer + sigmoid: $\hat{y}=\sigma(\langle w, z\rangle+b)$

Final decision rules

Here $z \in \mathbb{R}^{d}$ is high-level representation (outputs from neurons on final layer).
$\square y \in \mathbb{R}$

- Linear layer: $\hat{y}=\langle w, z\rangle+b$
- $y \in[0,1]$

■ Linear layer + sigmoid: $\hat{y}=\sigma(\langle w, z\rangle+b)$

- $y \in \mathbb{R}_{++}$

Final decision rules

Here $z \in \mathbb{R}^{d}$ is high-level representation (outputs from neurons on final layer).
$\square y \in \mathbb{R}$

- Linear layer: $\hat{y}=\langle w, z\rangle+b$
- $y \in[0,1]$
- Linear layer + sigmoid: $\hat{y}=\sigma(\langle w, z\rangle+b)$
- $y \in \mathbb{R}_{++}$
- Linear $+\exp : \hat{y}=e^{\langle\omega, z\rangle+b}$

Final decision rules

Here $z \in \mathbb{R}^{d}$ is high-level representation (outputs from neurons on final layer).
$\square y \in \mathbb{R}$

- Linear layer: $\hat{y}=\langle w, z\rangle+b$
- $y \in[0,1]$

■ Linear layer + sigmoid: $\hat{y}=\sigma(\langle w, z\rangle+b)$

- $y \in \mathbb{R}_{++}$
- Linear + exp: $\hat{y}=e^{\langle\omega, z\rangle+b}$
- Linear + softplus: $\hat{y}=\log \left(1+e^{\langle\omega, z\rangle+b}\right)$

Final decision rules

Here $z \in \mathbb{R}^{d}$ is high-level representation (outputs from neurons on final layer).
$\square y \in \mathbb{R}$

- Linear layer: $\hat{y}=\langle w, z\rangle+b$
- $y \in[0,1]$
- Linear layer + sigmoid: $\hat{y}=\sigma(\langle w, z\rangle+b)$
- $y \in \mathbb{R}_{++}$
- Linear + exp: $\hat{y}=e^{\langle w, z\rangle+b}$

■ Linear + softplus: $\hat{y}=\log \left(1+e^{\langle w, z\rangle+b}\right)$

- $y \in\{1,2,3 \ldots C\}$

Final decision rules

Here $z \in \mathbb{R}^{d}$ is high-level representation (outputs from neurons on final layer).
$\square y \in \mathbb{R}$

- Linear layer: $\hat{y}=\langle w, z\rangle+b$
- $y \in[0,1]$
- Linear layer + sigmoid: $\hat{y}=\sigma(\langle w, z\rangle+b)$
- $y \in \mathbb{R}_{++}$
- Linear + exp: $\hat{y}=e^{\langle w, z\rangle+b}$

■ Linear + softplus: $\hat{y}=\log \left(1+e^{\langle\omega, z\rangle+b}\right)$

- $y \in\{1,2,3 \ldots C\}$
- Linear layer + softmax: $\hat{y}=\operatorname{softmax}(\langle w, z\rangle+b)$ (softmax $=\exp +$ normalize)
- Regression
- MSE, MAE

Loss functions

■ Regression

- MSE, MAE
- Classification

Loss functions

- Regression
- MSE, MAE
- Classification
- why cross-entropy is so popular?

Loss functions

- Regression
- MSE, MAE
- Classification
- why cross-entropy is so popular?

Probabilistic interpretation of supervised learning

$$
\begin{gathered}
x, y \sim p(x, y)=p(x) p(y \mid x) \\
p(y \mid x)-?
\end{gathered}
$$

Loss functions

- Regression
- MSE, MAE
- Classification
- why cross-entropy is so popular?

Probabilistic interpretation of supervised learning

$$
\begin{gathered}
x, y \sim p(x, y)=p(x) p(y \mid x) \\
p(y \mid x)-?
\end{gathered}
$$

Our neural network actually defines approximating distribution $q(y \mid x, \theta)$. What to do next?

- Maximum likelihood estimation:

$$
\prod_{i} q\left(y_{i} \mid x_{i}, \theta\right) \rightarrow \max _{\theta}
$$

Losses derivation

- Maximum likelihood estimation:

$$
\prod_{i} q\left(y_{i} \mid x_{i}, \theta\right) \rightarrow \max _{\theta}
$$

■ Divergence minimization:

$$
\mathbb{E}_{p(x)} \mathcal{D}(p(y \mid x) \| q(y \mid x, \theta)) \rightarrow \min _{\theta}
$$

Losses derivation

- Maximum likelihood estimation:

$$
\prod_{i} q\left(y_{i} \mid x_{i}, \theta\right) \rightarrow \max _{\theta}
$$

- Divergence minimization:

$$
\mathbb{E}_{p(x)} \mathcal{D}(p(y \mid x) \| q(y \mid x, \theta)) \rightarrow \min _{\theta}
$$

- Bayesian inference: seek for $p(\theta \mid X, Y)$

Divergences

Divergences

■ Kullback-Leibler divergence
■ Wasserstein distance

- Jensen-Shannon divergence
- Cramer distance

Divergences

■ Kullback-Leibler divergence - the chosen one!
■ Wasserstein distance

- Jensen-Shannon divergence
- Cramer distance

Kullback-Leibler Divergence

Definition

$$
\mathrm{KL}(p \| q):=\int_{\mathcal{Y}} p(y) \log \frac{p(y)}{q(y)} d y
$$

Kullback-Leibler Divergence

Definition

$$
\mathrm{KL}(p \| q):=\int_{\mathcal{Y}} p(y) \log \frac{p(y)}{q(y)} d y=\mathbb{E}_{p(y)} \log \frac{p(y)}{q(y)}
$$

Kullback-Leibler Divergence

Definition

$$
\mathrm{KL}(p \| q):=\int_{\mathcal{Y}} p(y) \log \frac{p(y)}{q(y)} d y=\mathbb{E}_{p(y)} \log \frac{p(y)}{q(y)}
$$

Wonderful properties:
$\times p$ and q must share domain

Kullback-Leibler Divergence

Definition

$$
\mathrm{KL}(p \| q):=\int_{\mathcal{Y}} p(y) \log \frac{p(y)}{q(y)} d y=\mathbb{E}_{p(y)} \log \frac{p(y)}{q(y)}
$$

Wonderful properties:
$\times p$ and q must share domain
\times assymetric

Kullback-Leibler Divergence

Definition

$$
\mathrm{KL}(p \| q):=\int_{\mathcal{Y}} p(y) \log \frac{p(y)}{q(y)} d y=\mathbb{E}_{p(y)} \log \frac{p(y)}{q(y)}
$$

Wonderful properties:
$\times p$ and q must share domain
\times assymetric
\times does not satisfy the triangle inequality

Kullback-Leibler Divergence

Definition

$$
\mathrm{KL}(p \| q):=\int_{\mathcal{Y}} p(y) \log \frac{p(y)}{q(y)} d y=\mathbb{E}_{p(y)} \log \frac{p(y)}{q(y)}
$$

Wonderful properties:
$\times p$ and q must share domain
\times assymetric
\times does not satisfy the triangle inequality

Motivation behind Kullback-Leibler

Recall our task:

$$
\mathbb{E}_{p(x)} \mathrm{KL}(p(y \mid x) \| q(y \mid x, \theta)) \rightarrow \min _{\theta}
$$

Motivation behind Kullback-Leibler

Recall our task:

$$
\mathbb{E}_{p(x)} \mathrm{KL}(p(y \mid x) \| q(y \mid x, \theta)) \rightarrow \min _{\theta}
$$

Using definition:

$$
\mathbb{E}_{p(x)} \mathbb{E}_{p(y \mid x)} \log p(y \mid x)-\mathbb{E}_{p(x)} \mathbb{E}_{p(y \mid x)} \log q(y \mid x, \theta) \rightarrow \min _{\theta}
$$

Motivation behind Kullback-Leibler

Recall our task:

$$
\mathbb{E}_{p(x)} \mathrm{KL}(p(y \mid x) \| q(y \mid x, \theta)) \rightarrow \min _{\theta}
$$

Using definition:

$$
\mathbb{E}_{p(x)} \mathbb{E}_{p(y \mid x)} \log p(y \mid x)-\mathbb{E}_{p(x)} \mathbb{E}_{p(y \mid x)} \log q(y \mid x, \theta) \rightarrow \min _{\theta}
$$

Const (θ) terms can be ignored!

Motivation behind Kullback-Leibler

Recall our task:

$$
\mathbb{E}_{p(x)} \mathrm{KL}(p(y \mid x) \| q(y \mid x, \theta)) \rightarrow \min _{\theta}
$$

Using definition:

$$
-\mathbb{E}_{p(x)} \mathbb{E}_{p(y \mid x)} \log q(y \mid x, \theta) \rightarrow \min _{\theta}
$$

Const (θ) terms can be ignored!

Motivation behind Kullback-Leibler

Recall our task:

$$
\mathbb{E}_{p(x)} \mathrm{KL}(p(y \mid x) \| q(y \mid x, \theta)) \rightarrow \min _{\theta}
$$

Using definition:

$$
-\mathbb{E}_{p(x)} \mathbb{E}_{p(y \mid x)} \log q(y \mid x, \theta) \rightarrow \min _{\theta}
$$

Const (θ) terms can be ignored!
Implicit expectation minimization
We do not know $p(x, y)$, but ability to sample from it is enough!

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

$$
L(f)=\mathbb{E}_{p(x, y)} \operatorname{Loss}(x, y, \theta) \rightarrow \min _{\theta}
$$

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

$$
L(f)=\mathbb{E}_{p(x, y)} \operatorname{Loss}(x, y, \theta) \rightarrow \min _{\theta}
$$

Proposition: $\nabla_{\theta} L(f)=\mathbb{E}_{p(x, y)} \nabla_{\theta} \operatorname{Loss}(x, y, \theta)$

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

$$
L(f)=\mathbb{E}_{p(x, y)} \operatorname{Loss}(x, y, \theta) \rightarrow \min _{\theta}
$$

Proposition: $\nabla_{\theta} L(f)=\mathbb{E}_{p(x, y)} \nabla_{\theta} \operatorname{Loss}(x, y, \theta)$
Monte-Carlo estimation

$$
\mathbb{E}_{p(x, y)} \nabla_{\theta} \operatorname{Loss}(x, y, \theta) \approx \frac{1}{M} \sum_{i}^{M} \nabla_{\theta} \operatorname{Loss}\left(x_{i}, y_{i}, \theta\right)
$$

where x_{i}, y_{i} are samples from $p(x, y)$.

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

$$
L(f)=\mathbb{E}_{p(x, y)} \operatorname{Loss}(x, y, \theta) \rightarrow \min _{\theta}
$$

Proposition: $\nabla_{\theta} L(f)=\mathbb{E}_{p(x, y)} \nabla_{\theta} \operatorname{Loss}(x, y, \theta)$
Monte-Carlo estimation

$$
\mathbb{E}_{p(x, y)} \nabla_{\theta} \operatorname{Loss}(x, y, \theta) \approx \frac{1}{M} \sum_{i}^{M} \nabla_{\theta} \operatorname{Loss}\left(x_{i}, y_{i}, \theta\right)
$$

where x_{i}, y_{i} are samples from $p(x, y)$.
\checkmark an unbiased estimation (gives true gradient in expectation)

Stochastic gradient descent

Use unbiased estimations of gradient instead of true gradients!

Algorithm 1 SGD

1: Initialize θ_{0} randomly
2: for $t=0,1,2, \ldots$ do
3: \quad Sample M pairs $x_{i}, y_{i} \sim p(x, y)$
4: $\quad g_{t} \leftarrow \frac{1}{M} \sum_{i}^{M} \nabla_{\theta} \operatorname{Loss}\left(x_{i}, y_{i}, \theta_{t}\right)$
5: $\quad \theta_{t+1} \leftarrow \theta_{t}-\alpha_{t} g_{t}$
6: end for

Stochastic gradient descent

Use unbiased estimations of gradient instead of true gradients!

```
Algorithm 2 SGD
    1: Initialize }\mp@subsup{0}{0}{}\mathrm{ randomly
    2: for }t=0,1,2,\ldots\mathrm{ do
    3: Sample M pairs }\mp@subsup{x}{i}{},\mp@subsup{y}{i}{}~p(x,y
    4: }\quad\mp@subsup{g}{t}{}\leftarrow\frac{1}{M}\mp@subsup{\sum}{i}{M}\mp@subsup{\nabla}{0}{}\operatorname{Loss}(\mp@subsup{x}{i}{},\mp@subsup{y}{i}{},\mp@subsup{0}{t}{}
    5: }\quad\mp@subsup{0}{t+1}{}\leftarrow\mp@subsup{0}{t}{}-\mp@subsup{\alpha}{t}{}\mp@subsup{g}{t}{
    6: end for
```

 SGD converges to local optima if
 $$
\sum_{t} \alpha_{t}=+\infty \quad \sum_{t} \alpha_{t}^{2}<+\infty
$$

Deep Learning
 Unsupervised learning

Autoencoder

Autoencoder

Shaping latent representation

Shaping latent representation

Shaping latent representation

VAE

Possible usage

Possible usage

Transfer learning

Transfer learning

FROZEN

(no parameters updates)

Example: digits that are not ${ }^{1}$

$\gamma \boldsymbol{\gamma} \boldsymbol{\gamma} \boldsymbol{Y} \boldsymbol{Y} \boldsymbol{Y} \boldsymbol{\Sigma} \boldsymbol{\Sigma} \boldsymbol{\Sigma}$	

${ }^{1}$ https://arxiv.org/abs/1606.04345

Example: digits that are not ${ }^{1}$

${ }^{1}$ https://arxiv.org/abs/1606. 04345

Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN)

Training discriminator D :

$$
\begin{aligned}
& \operatorname{Loss}(D, G):= \\
&-\mathbb{E}_{x \sim p_{\text {real }} \log D(x)}- \\
&-\mathbb{E}_{x \sim p_{\text {synth }} \log (1-D(x))} \rightarrow \min _{D}
\end{aligned}
$$

Generative Adversarial Networks (GAN)

Training discriminator D :

$$
\begin{aligned}
\operatorname{Loss}(D, G) & := \\
& -\mathbb{E}_{x \sim p_{\text {real }} \log D(x)-} \\
& -\mathbb{E}_{x \sim p_{\text {synth }} \log (1-D(x))} \rightarrow \min _{D}
\end{aligned}
$$

Training generator G :

$$
\operatorname{Loss}(D, G) \rightarrow \max _{G}
$$

Generative Adversarial Networks (GAN)

Training discriminator D :

$$
\begin{aligned}
\operatorname{Loss}(D, G) & := \\
& -\mathbb{E}_{x \sim p_{\text {real }} \log D(x)}- \\
& -\mathbb{E}_{x \sim p_{\text {synth }} \log (1-D(x))} \rightarrow \min _{D}
\end{aligned}
$$

Training generator G :

$$
\operatorname{Loss}(D, G) \rightarrow \max _{G}
$$

Conditional GAN (cGAN)

> Train $p_{\text {synth }}(x \mid c)$ to imitate $p_{\text {data }}(x \mid c)!$

Conditional GAN (cGAN)

Conditional GAN (cGAN)

Train $p_{\text {synth }}(x \mid c)$ to imitate $p_{\text {data }}(x \mid c)$!

$$
\begin{aligned}
& \mathbb{E}_{c \sim p(c)} \operatorname{Loss}(D, G, c) \rightarrow \min _{D} \\
& \mathbb{E}_{c \sim p(c)} \operatorname{Loss}(D, G, c) \rightarrow \max _{G}
\end{aligned}
$$

\checkmark condition can be of any complexity!

Conditional GAN (cGAN)

Train $p_{\text {synth }}(x \mid c)$ to imitate $p_{\text {data }}(x \mid c)$!

$$
\begin{aligned}
& \mathbb{E}_{c \sim p(c)} \operatorname{Loss}(D, G, c) \rightarrow \min _{D} \\
& \mathbb{E}_{c \sim p(c)} \operatorname{Loss}(D, G, c) \rightarrow \max _{G}
\end{aligned}
$$

\checkmark condition can be of any complexity!
\checkmark can be viewed as loss function learning when output is complex

cGAN: Example

cGAN: Example

Unpaired learning

Unpaired learning

Unpaired learning

$$
\mathcal{Y} \rightarrow \mathcal{X}
$$

Unpaired learning

CycleGAN: Example

