
Minding the Gaps for
Block Frank-Wolfe

Optimization of
Structured SVMs

Anton Osokin* Jean-Baptiste Alayrac*

Isabella Lukasewitz Puneet K. Dokania

Simon Lacoste-Julien

Bayesian Methods Research Group seminar
Moscow State University – June 9th 2016

* equal contribution

Outline

 Structured Support Vector Machine

 Frank-Wolfe optimization

 Block-Coordinate Frank-Wolfe

 Improving BC-FW:
 Gap sampling

 Caching

 Pairwise and away steps

 Regularization path for SSVM

 structured prediction:

 learn linear classifier:

 structured SVM objective (primal):

Structured SVM

decoding

vs. binary hinge loss:

structured hinge loss:

 structured prediction:

 learn linear classifier:

 structured SVM objective (primal):

 structured SVM dual:

 primal-dual pair:

Structured SVM

decoding

loss-augmented decoding

-> exponential number of variables!

Structured SVM optimization

 popular approaches:
 stochastic subgradient method

 pros: online!
 cons: sensitive to step-size; don’t know when to stop

 cutting plane method (SVMstruct)
 pros: automatic step-size; duality gap
 cons: batch! -> slow for large n

 block-coordinate Frank-Wolfe on dual

-> combines best of both worlds:
 online
 automatic step-size via analytic line search
 duality gap
 rates also hold for approximate oracles

suboptimality
after K passes
through data:

[Ratliff et al. 07,
Shalev-Shwartz et al. 10]

[Tsochantaridis et al. 05,
Joachims et al. 09]

[Lacoste-Julien et al. 13]

 FW algorithm – repeat:

convex & cts. differentiable

convex & compact

 constrained optimization:

(aka conditional gradient)

where:

1) Find a good feasible direction by
minimizing linearization of :

2) Take a convex step in the direction:

 Properties: O(1/T) rate
 sparse iterates
 get duality gap for free
 affine invariant
 rate holds even if linear

subproblem solved
approximately

Frank-Wolfe algorithm [Frank, Wolfe 1956]

 FW algorithm – repeat:

 FW gap is free:

1) Find a good feasible direction by
minimizing linearization of :

2) Take a convex step in the direction:

Frank-Wolfe gap

 Properties: O(1/T) rate
 sparse iterates
 get duality gap for free
 affine invariant
 rate holds even if linear

subproblem solved
approximately



 FW algorithm – repeat:

 structured SVM dual:

2) Take a convex step in the direction:

use primal-dual link:

key insight:

becomes a batch subgradient step:

choose by analytic line search on quadratic dual

Frank-Wolfe for SSVM [Lacoste-Julien et al., 2013]

1) Find good feasible direction by
minimizing linearization of :

loss-augmented decoding
on each example

Block-Coordinate Frank-Wolfe

 for constrained optimization over compact product domain:

 pick i at random; update only block i with a FW step:

 same O(1/T) rate as batch FW

-> each step n times cheaper though

-> constant can be the same (SVM e.g.)

 Properties: O(1/T) rate
 sparse iterates
 get duality gap guarantees
 affine invariant
 rate holds even if linear

subproblem solved
approximately

[Lacoste-Julien et al. 13]



Block-Coordinate Frank-Wolfe

 for constrained optimization over compact product domain:

 pick i at random; update only block i with a FW step:

loss-augmented decoding

structured SVM:

 same O(1/T) rate as batch FW

-> each step n times cheaper though

-> constant can be the same (SVM e.g.)

[Lacoste-Julien et al. 13]

Key insight: separable FW gap

 Frank-Wolfe gap

can be written as a sum of block gaps

where

 block gap represents suboptimality at one block

 can use block gaps to adaptively adjust the algorithm

Contributions

 Improving BC-FW:

 Gap sampling

 Caching

 Pairwise and away steps

 Regularization path for SSVM

Gap sampling (new!)

 We can use block gaps to adaptively pick an object for the next
iteration

 Multiple schemes possible:

 pick the object with largest gap (deterministic)

 sampling with probabilities proportional to block gaps (or
squares?)

 More adaptive than sampling proportional to Lipschitz constants

[Nesterov, 2012; Needell et al., 2014; Zhao & Zhang, 2015]

 We are aware of only one adaptive sampling method:

[Csiba et al. (2015)] in the context of SDCA

Exploitation vs. staleness trade-off

 When selecting objects all the other gaps become outdated (stale)

 If using very stale gaps, the gap estimates become bad

 To compensate, we can recomputed the true gap after every X
passes over the dataset

Illustrative experiment on OCR dataset:

Gap sampling: theoretical result

 If we sample objects proportional to the exact block gaps

then convergence rate is multiplied by a constant depending on

the non-uniformity of the gaps and the non-uniformity of the

(unknown) curvature constants.

 In the best case (curvature constants are uniform, gaps are non-
uniform), gap sampling is times faster

 In the worst case (curvature constants are non-uniform, gaps are
uniform), gap sampling is times slower

 If gaps are moderately non-uniform gap sampling is always faster

 Open problem: how to analyze the staleness effect?

Caching oracle calls (new!)

 The oracle might be the bottleneck of the algorithm

 We can cache the output of the oracle and reuse them

same idea was used in 1-slack cutting plane [Joachims et al. 09]

 Instead of the oracle we call a cache oracle

 If the cache corner can give enough improvement use it

 Adaptive criterion for cache hit:

Caching oracle calls (new!)

 Cache regimes:

 With global cache criterion we can prove convergence

 Open problem: convergence rate based on the local criterion

Slow convergence of Frank-Wolfe...

Pairwise and away steps (new!)

standard FW

zig-zagging problem for FW

away step
fix

away-step FW

see [Lacoste-Julien & Jaggi 15]

Variants with linear convergence

away-step FW pairwise FW

 fully-corrective FW (FC-FW): re-optimize over convex hull of
previously found vertices (correction polytope)

see [Lacoste-Julien & Jaggi 15]

Block-Coordinate versions (new!)

 We propose Pairwise and Away variants for BC-FW

 Algorithm BC-PFW (pairwise steps)

 Pick FW corner

 Pick Away corner

 Analytic line search

 Move mass from Away corner to FW corner

 Catch: need to maintain dual variables, but similar to cache

 Bad news: do not have satisfying theoretical results

 Good news: observe linear convergence in some cases

Comparing different variants

 8 methods:
 gap sampling / uniform sampling

 caching / no caching

 BC-FW / BC-PFW (pairwise steps)

 4 structured prediction datasets:
 OCR – character recognition

 CoNLL – text chunking

 HorseSeg (3 sizes) – binary image segmentation

 LSP – human pose estimation

 3 values of regularization parameter: good, too big, too small

 2 pages of plots

Comparing different variants

Comparing different variants

Conclusion 1: gap sampling always helps! (solid vs. dashed)

Comparing different variants

Conclusion 2: caching always helps in the number of oracle calls
(blue vs. yellow). If oracle is fast, caching can even hurt because of
overheads. If oracle is slow, caching is a must!

Comparing different variants

Conclusion 3: pairwise steps help reaching high accuracy.
The effect is stronger if the problem is more strongly convex.

Comparing different variants

Recommendation: use (a) BC-PFW + gap sampling + caching or
(b) BC-FW + gap sampling

Regularization path (new!)

 Regularization path = solving the problem for all possible values of
regularization parameter

 Better than the grid search, but usually expensive

 Exact paths are unstable and often intractable

 We construct an ε-approximate regularization path

 We use piecewise constant approximation except the first piece

 Algorithm:
1. Initialization: construct the largest breakpoint

2. At a breakpoint, construct the next one such that the gap is smaller than ε

3. Optimize with any solver to get gap of κε, κ < 1 (to make a step)

4. Repeat steps 2 and 3 until convergence

Regularization path: results

 We can compute the full path for smaller datasets:

HorseSeg-small and OCR-small

 For larger datasets both grid search and paths exceed time limits

Contributions

 Improvements over BCFW:

 adaptive non-uniform sampling of the training objects

 gap-based criterion for caching the oracle calls

 pairwise and away steps in the block-coordinate setting

 Regularization path for SSVM.

Key insight: adaptivity via using the gaps

