Minding the Gaps for
Block Frank-Wolfe
Optimization of
Structured SVMs

Anton Osokin* Jean-Baptiste Alayrac*

Isabella Lukasewitz Puneet K. Dokania

Simon Lacoste-Julien

* equal contribution

Bayesian Methods Research Group seminar
Moscow State University — June 9t 2016

Outline

= Structured Support Vector Machine

" Frank-Wolfe optimization

= Block-Coordinate Frank-Wolfe

= Improving BC-FW:
= Gap sampling
= (Caching
= Pairwise and away steps

= Regularization path for SSVM

Structured SVM

= structured prediction:

= |earn linear classifier:

hw(x) = argeﬂg}ax(w, ¢(x,y)) <— decoding
y

= structured SVM objective (primal): structured hinge |oss:

e

min 3 llwl|*+5 é max {L(w, y)+(w, p(;, y))}—('w, A (@i, i))

vs. binary hinge loss: max {O, 1-— <w, d(x;) yz>}

Structured SVM

= structured prediction:

= |earn linear classifier:

hw(x) = argg}ax(w, ¢(x,y)) <— decoding
y

= structured SVM objective (primal):
i 3l 2 masc{ L(yi, u)+(w, é(1) |~ (w. ¢l v))

A - 7
~

loss-augmented decoding

= structured SVM dual:

max bla — % |]Aa||2 -> exponential number of variables!
acM
M= Dy X X Dy, A= [(i, yi) — d(i,y)) € RY]
(171,
= primal-dual pair: w* = Aa” b:= (EL@(y))z'e[n],yeyi

Structured SVM optimization

min %nwn%%éjl max { Ly,)+ (w. (i,) |~ (w, @i,)

= popular approaches:

= stochastic subgradient method giatl“ffg:]a'-oz' ‘a1, 10]
alev-onwartz et al.
= pros: online!

= cons: sensitive to step-size; don’t know when to stop

= cutting plane method (SVMstruct) J[Zﬁ*:;f;tz'g;sgé]a")f"
= pros: automatic step-size; duality gap
= cons: batch! -> slow for large n

* block-coordinate Frank-Wolfe on dual itacoste-sulien et al. 13]

-> combines best of both worlds:

= online
= automatic step-size via analytic line search
= duality gap

= rates also hold for approximate oracles

suboptimality
after K passes
through data:

O (k)

Frank-Wolfe algorithm terank woire 1956

(aka conditional gradient)

= constrained optimization: min f(a)
acM

where:
f convex & cts. differentiable

M convex & compact

= FW algorithm — repeat:

1) Find a good feasible direction by

minimizing linearization of f: = Properties: O(1/T) rate

- sparse iterates
S¢41 € arg r,nin (', Vf(ay)) - get duality gap g(«) for free
s’'e M affine invariant
2) Take a convex step in the direction: - rate holds even if linear
Qg = (1 —) ay + v Si41 subproblem solved

approximately

Frank-Wolfe gap

= FW gapis free:

g(a) = Inax (a— 8, Vf(a)) = (a—s,Vfla))

= FW algorithm — repeat:

1) Find a good feasible direction by

minimizing linearization of f: = Properties: O(1/T) rate

- sparse iterates
S¢41 € arg r;nin (s, Vf(ay)) - get duality gap g(«) for free
s’eM affine invariant
2) Take a convex step in the direction: - rate holds even if linear
Qg = (1 —) ay + v Si41 subproblem solved

approximately

Frank'WOIfe fOl‘ SSVM [Lacoste-Julien et al., 2013]

m structured SVM dual: — n;lj& fla) fla) =3 Aa|? - b
(8
M = Alyll X ... X A|yn|

use primal-dual link: wr = Aoy

= FW algorithm — repeat:

key insight:
1) Find good feasible direction by loss-augmented decoding
minimizing linearization of f: on each example ¢
_ , N
arg min ,V (81 ard maX{L 9 + wt, i, }
st41 € arg min (s', Vf (eu)) max 4 L(yi,) + (wi, $(@i,)

2) Take a convex step in the direction: becomes a batch subgradient step:

Qi1 = (1 ‘@t‘l"ﬂ St4-1 W41 = Wt — AVt dgyp
choose by analytic line search on quadratic dual ()

Block-Coordinate Frank-Wolfe

[Lacoste-Julien et al. 13]

= for constrained optimization over compact product domain:

min f(a)
aeMD) x ... x M)

o = (Oé(l), c ooy a(n))

= pick i at random; update only block i with a FW step:
(i) = argmln < '(Z-),V(z-)f(a(t)»

S eM
WD — (1 e 4 g = Properties: O(1/T) rate
) == () T80 - sparse iterates
= same O(1/T) rate as batch FW - get duality gap guarantees
-> each step n times cheaper though - affine invariant

rate holds even if linear
subproblem solved
approximately

-> constant can be the same (SVM e.g.)

Block-Coordinate Frank-Wolfe

[Lacoste-Julien et al. 13]

= for constrained optimization over compact product domain:

min F(a) structured SVM:
(1) (n)
ac ML) x. ... xM fla) := % ||Aa||2 Ny NIPN
a = (agy, -, 0)) M= Dy X oo X Dy,

= pick i at random; update only block i with a FW step:

- /. : (t) arg max {L i : i }
S(i) = argrﬂp <s(z),V(Z)f(a)> gyeyf,; (Yi,y) + <wt o(x y)>
oh loss-augmented decoding

Et;}—l) — (1 — fy)agg + VS(4)

= same O(1/T) rate as batch FW
-> each step n times cheaper though

-> constant can be the same (SVM e.g.)

Key insight: separable FW gap

* Frank-Wolfe gap
9(c) = max (a— s, Vf(a))
can be written as a sum of block gaps
g(a) =) gi(a)
i=1

where

() '= max (o — S, Vinfla
gi(a) s@em@'>< 0~ 56y Y/ (@)

= block gap represents suboptimality at one block

= can use block gaps to adaptively adjust the algorithm

Contributions

= Improving BC-FW:
= Gap sampling
= Caching

= Pairwise and away steps

= Regularization path for SSVM

Gap sampling (ew

= We can use block gaps to adaptively pick an object for the next
iteration

= Multiple schemes possible:
= pick the object with largest gap (deterministic)
= sampling with probabilities proportional to block gaps (or
squares?)

= More adaptive than sampling proportional to Lipschitz constants
[Nesterov, 2012; Needell et al., 2014; Zhao & Zhang, 2015]

= We are aware of only one adaptive sampling method:
[Csiba et al. (2015)] in the context of SDCA

Exploitation vs. staleness trade-offt

= When selecting objects all the other gaps become outdated (stale)
= |f using very stale gaps, the gap estimates become bad

" To compensate, we can recomputed the true gap after every X
passes over the dataset

lllustrative experiment on OCR dataset:

0
10 Gap,1 Q_100 /-’f’-\ - _,f'v’/\-\ﬁ.w\/ ~ .
Gap, 5 ©
Gap, 10 2
Gap, 100 =
Q_ 1
© Gap, Inf g
(=) . o
g 1 = = = Uniform
=210 o Gap, 1
g = Gap, 5
A .GCJ Gap, 10
= Gap, 100
Q 101 Gap, Inf
2 — =— = Uniform
T L ~
1072 ' | ' | ' o ' | ' | '
50 100 150 200 250 50 100 150 200 250

Effective passes over dataset Effective passes over data

Gap sampling: theoretical result

= |f we sample objects proportional to the exact block gaps

then convergence rate O(1/k) is multiplied by a constant depending on
the non-uniformity of the gaps and the non-uniformity of the

(unknown) curvature constants.

" |n the best case (curvature constants are uniform, gaps are non-
uniform), gap sampling is nv/n times faster

" |n the worst case (curvature constants are non-uniform, gaps are
uniform), gap sampling is v/n times slower

= |f gaps are moderately non-uniform gap sampling is always faster

= Open problem: how to analyze the staleness effect?

Caching oracle calls mew

" The oracle might be the bottleneck of the algorithm

= We can cache the output of the oracle and reuse them

same idea was used in 1-slack cutting plane [Joachims et al. 09]

= Instead of the oracle we call a cache oracle
y; = argmax {Li(y) + ('w,cb(fv@-,y))}

yeC;

= |f the cache corner can give enough improvement use it

= Adaptive criterion for cache hit:

A k;
Jcache = maX(ng;() ZQ(kO))

n

Caching oracle calls mew

= Cache regimes:

A 0 No cache
10 Only cache
Global
Local
2 o
@
(®))
v >
=
S
0.05 010"
T 20 40 60

Effective passes over dataset

= With global cache criterion we can prove convergence

= Open problem: convergence rate based on the local criterion

Pairwise and away steps mew

Slow convergence of Frank-Wolfe...

standard FW away-step FW
Q o (O
2(0) Wil
(] | .
w 5
|)
i
(t+1).....;° z(_'}

zig-zagging problem for FW

see [Lacoste-Julien & Jaggi 15]

Variants with linear convergence

@ Uy

e Uy

+(0)

away-step Fw pairwise Fw

= fully-corrective FW (FC-FW): re-optimize over convex hull of
previously found vertices (correction polytope)

@ @ see [Lacoste-Julien & Jaggi 15]

Block-Coordinate versions mew

= We propose Pairwise and Away variants for BC-FW

= Algorithm BC-PFW (pairwise steps)

= Pick FW corner

arg max {L(yi, y) + (wr, p(;, y))}

ye);
= Pick Away corner

arg mip {L(yz-, y) + (w, ¢(mi,y)>}

7

= Analytic line search

= Move mass from Away corner to FW corner

= Catch: need to maintain dual variables, but similar to cache
= Bad news: do not have satisfying theoretical results

= Good news: observe linear convergence in some cases

Comparing different variants

= 8 methods:
= gap sampling / uniform sampling
= caching / no caching
= BC-FW / BC-PFW (pairwise steps)

= 4 structured prediction datasets:
"= OCR - character recognition
* CoNLL - text chunking
" HorseSeg (3 sizes) — binary image segmentation
= LSP —human pose estimation

= 3 values of regularization parameter: good, too big, too small

= 2 pages of plots

Comparing different variants

True duality gap

True duality gap

SAll.

Gap e Gap | e 1. & Unif. e L Unif. | s
‘ + + BOPFW + Cache +sam.+ BCFW+Cache @ UM 4 BOPFW + Cache @1 UME 4+ BOFW+ Cache

SAIIL,

Gap C ok Gap | e e Unife L o b Unif |, pemr
+ +BePFW B P rporw @ Ui poprw @ U4 porw

600

I |
102 1@
A\
WA p
g RN g1
g W >
S 10 N =
g ~ s ‘g
© L T 102
g -~ "\""".':"-. - [4b]
— = -~ — ~ E
-~ ~
S - 10°° ' = 109
500 1000 1500 2000 50 100 150 200 400
Effective passes over data Effective passes over data Effective passes over data
107" rg 103 N
10 > ad =
F10* BN =
3 - 3
o N o
S x\{! 2
3 = ~ =
10 “
105 A L e S 10 -3 L) . .
0 0.5 1 1.5 0 10 20 30 40
Time (in h) Time (in h)

Time (in h)

(a) OCR-large, A = 0.001

(b) HorseSeg-medium, A = 10

(c) LSP-small, A = 100

Comparing different variants

True duality gap

True duality gap

I
Sal

‘ + Gab | pepEW + Cache +?:111r1) + BCFW +Cache

Unif.

&

| [)
I Unif. N4 (e Gap ,
® amy. T BCPFW + Cache B+ BCFW+ Cache © P4 BePFW

SAIIL,

Gap S Unif. . - Unif. S
[n] o +BCFW © sam. +BCPFW @ cam. +BCFW

o
Ql.

Om
‘J_.Glj o B
o

iy

500

1000

1500

Effective passes over data

10"
\ &
W
102 e\
\
107
0
10"
1072
103

2000

Time (in h)
(a) OCR-large, A = 0.001

True duality gap

True duality gap

10°%§ »
o\
A\N
A\Y
W™
41 N\ Lo
10 N
-~
~— S
* ~ \"" T X
S —
S
10°° ' : =
50 100 150 200
Effective passes over data
103
104
B
\ e
U\.\h
107 =
1 1.5 2
Time (in h)

(b) HorseSeg-medium, A = 10

True duality gap

True duality gap

—_
o

-
o
ro

-
o
s

—_
o

-
o
ra

1073

0 200 400 600
Effective passes over data
0 10 20 30 40

Time (in h)
(c) LSP-small, A = 100

Conclusion 1: gap sampling always helps! (solid vs. dashed)

Comparing different variants

True duality gap

True duality gap

+ G20 4 BOPFW + Cache +G“l’ + BOFW+Cache * Unit. 4 BCPFW + Cache *‘ Bif 4 BOFW+Cache @ %P+ popFw @ $P wporw @ UnE v peprw @ UNiE 4 BoFw
“ i I |
10" 1072
e
W 1
|\ 5 =Y \ 210
\\ o O o
107 9@ o S04t \N\Lm =
\ S|
a:?Q B o . 3 102
\.\ | =} © ~ -...:'" -~ b
(08 - 2 NSt 2
103 ‘l‘tf o . = SoNTSE =
o e
: : O , 105 ' ' ' 1078 : ' :
0 500 1000 1500 2000 50 100 150 200 0 200 400 600
Effective passes over data Effective passes over data
10 -1 -
a e 10"
S S
1072 = =
© ©
3 S 10 2
) N o
c 4 2
3 = : =
10 o W~
R e N) , 103 . L L L
. 1 1.5 2 0 10 20 30 40
Time (in h) Time (in h) Time (in h)
(a) OCR-large, A = 0.001 (b) HorseSeg-medium, A = 10 (¢) LSP-small, A = 100

Conclusion 2: caching always helps in the number of oracle calls
(blue vs. yellow). If oracle is fast, caching can even hurt because of
overheads. If oracle is slow, caching is a must!

Comparing different variants

True duality gap

True duality gap

10"

102

107

iy
o

—_
o
r

—_
o
=)

‘ + E“l‘ + BOPFW + Cache +?“D + BOFW +Cache

I
® Uil 4+ BCPFW + Cache

]
B BOFW+ Cache © G o+ BCPFW

g Gap 0 0111 Unif. S
B P +BCFW @ (" +BCPFW @ _ 1+ BCFW

500 1000 1500 2000

Effective passes over data

Time (in h)
(a) OCR-large, A = 0.001

True duality gap

True duality gap

103 ¢ »
o\
A\
A\Y
A\
4l N Lo
10 N\
-~
~— S
* ~ ‘."" T X
S —
S
10°° ' : =
50 100 150 200
Effective passes over data
103
104
B
\ 5
U\'\h
105 R
1 1.5 2
Time (in h)

(b) HorseSeg-medium, A = 10

a10"

o

=

s

'D 10 '2 L

Lb]

=]

—

1078 ' '
0 200 400
Effective passes over data

210"

o

=

E

T 102

(]

2

|_

1073 ' ! !
0 10 20 30

Time (in h)
(c) LSP-small, A = 100

Conclusion 3: pairwise steps help reaching high accuracy.
The effect is stronger if the problem is more strongly convex.

Comparing different variants

True duality gap

True duality gap

+ G20 4 BOPFW + Cache +?:111r1) + BOFW+Cache * Unit. 4 BCPFW + Cache *E;;g +BOFW+Cache © %+ poppw @ O v porw @ Uit 4 peprw @ Unif 4 Borw
san. sam, ' | sam, sam,
10" 107y
e
W 1
|\ 5 =Y \ 210
o = N >
10 -2 .\ "? 4 \\ o é.‘
m 107§ ®
\ a: a S N >
Q o T 1072
\.\ m = (0] Y [}
s __ O 2 NSTsT 2
103 “-G'f S " ; X =
o ~=
: * O , 105 ' : ' ' 1078 : ' :
0 500 1000 1500 2000 50 100 150 200 0 200 400 600
Effective passes over data Effective passes over data Effective passes over data
107" 3
g g0}
() o
1072 = =
E E
3 ~ D102}
) N o
c 4 2
3 = : =
10 U\'\h
R e N) , 103 . L L L
. 1 1.5 2 0 10 20 30 40
Time (in h) Time (in h) Time (in h)
(a) OCR-large, A = 0.001 (b) HorseSeg-medium, A = 10 (c) LSP-small, A = 100

Recommendation: use (a) BC-PFW + gap sampling + caching or
(b) BC-FW + gap sampling

Regularization path @ew

= Regularization path = solving the problem for all possible values of
regularization parameter

= Better than the grid search, but usually expensive

= Exact paths are unstable and often intractable

= We construct an e-approximate regularization path

= We use piecewise constant approximation except the first piece

= Algorithm:
1. Initialization: construct the largest breakpoint
2. At a breakpoint, construct the next one such that the gap is smaller than €
3. Optimize with any solver to get gap of kg, k < 1 (to make a step)
4. Repeat steps 2 and 3 until convergence

Regularization path: results

Time in (h)

10" 10°
O e-approximate Path B3 e-approximate Path
ol —@—Grid: warm start 4 —@— Grid: warm start

10 —— Grid: no warm start 10 —— Grid: no warm start
)]

10 % 103
o

102 £ 102
Z

10°¢ 10

107 o » 2 o 2 2 100"6 » 2 0 2 4

10 10 10 10 10° 10~ 10 10 10 10 10° 10°
Value of A Value of A

= We can compute the full path for smaller datasets:
HorseSeg-small and OCR-small

= For larger datasets both grid search and paths exceed time limits

Contributions

= Improvements over BCFW:
= adaptive non-uniform sampling of the training objects
= gap-based criterion for caching the oracle calls

= pairwise and away steps in the block-coordinate setting

= Regularization path for SSVM.

Key insight: adaptivity via using the gaps

