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Outline

= Structured Support Vector Machine

" Frank-Wolfe optimization

= Block-Coordinate Frank-Wolfe

= Improving BC-FW:
= Gap sampling
= (Caching
= Pairwise and away steps

= Regularization path for SSVM



Structured SVM

= structured prediction:

= |earn linear classifier:

hw(x) = argeﬂg}ax(w, ¢(x,y)) <— decoding
y

= structured SVM objective (primal): structured hinge |oss:

e

min 3 llwl|*+5 é max {L(w, y)+(w, p(;, y))}—('w, A (@i, i) )

vs. binary hinge loss: max {O, 1-— <w, d(x;) yz>}



Structured SVM

= structured prediction:

= |earn linear classifier:

hw(x) = argg}ax(w, ¢(x,y)) <— decoding
y

= structured SVM objective (primal):
i 3l 2 masc{ L(yi, u)+(w, é( 1) |~ (w. ¢l v))

A - 7
~

loss-augmented decoding

= structured SVM dual:

max bla — % |]Aa||2 -> exponential number of variables!
acM
M= Dy X X Dy, A= [ (i, yi) — d(i,y)) € RY]
(171,
= primal-dual pair: w* = Aa” b:= (EL@(y))z'e[n],yeyi



Structured SVM optimization

min %nwn%%éjl max { Ly, )+ (w. (i, ) |~ (w, @i, )

= popular approaches:

= stochastic subgradient method giatl“ffg:]a'-oz' ‘a1, 10]
alev-onwartz et al.
= pros: online!

= cons: sensitive to step-size; don’t know when to stop

= cutting plane method (SVMstruct) J[Zﬁ*:;f;tz'g;sgé]a")f"
= pros: automatic step-size; duality gap
= cons: batch! -> slow for large n

* block-coordinate Frank-Wolfe on dual itacoste-sulien et al. 13]

-> combines best of both worlds:

= online
= automatic step-size via analytic line search
= duality gap

= rates also hold for approximate oracles

suboptimality
after K passes
through data:

O (k)



Frank-Wolfe algorithm terank woire 1956

(aka conditional gradient)

= constrained optimization: min f(a)
acM

where:
f convex & cts. differentiable

M convex & compact

= FW algorithm — repeat:

1) Find a good feasible direction by

minimizing linearization of f: = Properties: O(1/T) rate

- sparse iterates
S¢41 € arg r,nin (', Vf(ay)) - get duality gap g(«) for free
s’'e M affine invariant
2) Take a convex step in the direction: - rate holds even if linear
Qg = (1 — ) ay + v Si41 subproblem solved

approximately



Frank-Wolfe gap

= FW gapis free:

g(a) = Inax (a— 8, Vf(a)) = (a—s,Vfla))

= FW algorithm — repeat:

1) Find a good feasible direction by

minimizing linearization of f: = Properties: O(1/T) rate

- sparse iterates
S¢41 € arg r;nin (s, Vf(ay)) - get duality gap g(«) for free
s’eM affine invariant
2) Take a convex step in the direction: - rate holds even if linear
Qg = (1 — ) ay + v Si41 subproblem solved

approximately



Frank'WOIfe fOl‘ SSVM [Lacoste-Julien et al., 2013]

m structured SVM dual: — n;lj& fla)  fla) =3 Aa|? - b
(8
M = Alyll X ... X A|yn|

use primal-dual link: wr = Aoy

= FW algorithm — repeat:

key insight:
1) Find good feasible direction by loss-augmented decoding
minimizing linearization of f: on each example ¢
_ , N
arg min ,V (81 ard maX{L 9 + wt, i, }
st41 € arg min (s', Vf (eu)) max 4 L(yi, ) + (wi, $(@i, )

2) Take a convex step in the direction: becomes a batch subgradient step:

Qi1 = (1 ‘@t‘l"ﬂ St4-1 W41 = Wt — AVt dgyp
choose by analytic line search on quadratic dual ()




Block-Coordinate Frank-Wolfe

[Lacoste-Julien et al. 13]

= for constrained optimization over compact product domain:

min f(a)
aeMD) x ... x M)

o = (Oé(l), c ooy a(n))

= pick i at random; update only block i with a FW step:
(i) = argmln < '(Z-),V(z-)f(a(t)»

S eM
WD — (1 e 4 g = Properties: O(1/T) rate
) == () T80 - sparse iterates
= same O(1/T) rate as batch FW - get duality gap guarantees
-> each step n times cheaper though - affine invariant

rate holds even if linear
subproblem solved
approximately

-> constant can be the same (SVM e.g.)



Block-Coordinate Frank-Wolfe

[Lacoste-Julien et al. 13]

= for constrained optimization over compact product domain:

min F(a) structured SVM:
(1) (n)
ac ML) x. ... xM fla) := % ||Aa||2 Ny NIPN
a = (agy, -, 0)) M= Dy X oo X Dy,

= pick i at random; update only block i with a FW step:

- /. : (t) arg max {L i : i }
S(i) = argrﬂp <s(z),V(Z)f(a )> gyeyf,; (Yi,y) + <wt o(x y)>
oh loss-augmented decoding

Et;}—l) — (1 — fy)agg + VS(4)

= same O(1/T) rate as batch FW
-> each step n times cheaper though

-> constant can be the same (SVM e.g.)




Key insight: separable FW gap

* Frank-Wolfe gap
9(c) = max (a— s, Vf(a))
can be written as a sum of block gaps
g(a) = ) gi(a)
i=1

where

() '= max (o — S, Vinfla
gi(a) s@em@'>< 0~ 56y Y/ (@)

= block gap represents suboptimality at one block

= can use block gaps to adaptively adjust the algorithm



Contributions

= Improving BC-FW:
= Gap sampling
= Caching

= Pairwise and away steps

= Regularization path for SSVM



Gap sampling (ew

= We can use block gaps to adaptively pick an object for the next
iteration

= Multiple schemes possible:
= pick the object with largest gap (deterministic)
= sampling with probabilities proportional to block gaps (or
squares?)

= More adaptive than sampling proportional to Lipschitz constants
[Nesterov, 2012; Needell et al., 2014; Zhao & Zhang, 2015]

= We are aware of only one adaptive sampling method:
[Csiba et al. (2015)] in the context of SDCA



Exploitation vs. staleness trade-offt

= When selecting objects all the other gaps become outdated (stale)
= |f using very stale gaps, the gap estimates become bad

" To compensate, we can recomputed the true gap after every X
passes over the dataset

lllustrative experiment on OCR dataset:
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Gap sampling: theoretical result

= |f we sample objects proportional to the exact block gaps

then convergence rate O(1/k) is multiplied by a constant depending on
the non-uniformity of the gaps and the non-uniformity of the

(unknown) curvature constants.

" |n the best case (curvature constants are uniform, gaps are non-
uniform), gap sampling is nv/n times faster

" |n the worst case (curvature constants are non-uniform, gaps are
uniform), gap sampling is v/n times slower

= |f gaps are moderately non-uniform gap sampling is always faster

= Open problem: how to analyze the staleness effect?



Caching oracle calls mew

" The oracle might be the bottleneck of the algorithm

= We can cache the output of the oracle and reuse them

same idea was used in 1-slack cutting plane [Joachims et al. 09]

= Instead of the oracle we call a cache oracle
y; = argmax {Li(y) + ('w,cb(fv@-,y))}

yeC;

= |f the cache corner can give enough improvement use it

= Adaptive criterion for cache hit:

A k;
Jcache = maX(ng;( ) ZQ(kO))

n



Caching oracle calls mew

= Cache regimes:

A 0 No cache
10 Only cache
Global
Local
2 o
@
(®))
v >
=
S
0.05 010"
T 20 40 60

Effective passes over dataset

= With global cache criterion we can prove convergence

= Open problem: convergence rate based on the local criterion



Pairwise and away steps mew

Slow convergence of Frank-Wolfe...

standard FW away-step FW
Q o (O
2(0) Wil
(] | .
w 5
| )
i
(t+1).....;° z(_'}

zig-zagging problem for FW

see [Lacoste-Julien & Jaggi 15]



Variants with linear convergence

@ Uy

e Uy

+(0)

away-step Fw pairwise Fw

= fully-corrective FW (FC-FW): re-optimize over convex hull of
previously found vertices (correction polytope)

@ @ see [Lacoste-Julien & Jaggi 15]



Block-Coordinate versions mew

= We propose Pairwise and Away variants for BC-FW

= Algorithm BC-PFW (pairwise steps)

= Pick FW corner

arg max {L(yi, y) + (wr, p(;, y))}

ye);
= Pick Away corner

arg mip {L(yz-, y) + (w, ¢(mi,y)>}

7

= Analytic line search

= Move mass from Away corner to FW corner

= Catch: need to maintain dual variables, but similar to cache
= Bad news: do not have satisfying theoretical results

= Good news: observe linear convergence in some cases



Comparing different variants

= 8 methods:
= gap sampling / uniform sampling
= caching / no caching
= BC-FW / BC-PFW (pairwise steps)

= 4 structured prediction datasets:
"= OCR - character recognition
* CoNLL - text chunking
" HorseSeg (3 sizes) — binary image segmentation
= LSP —human pose estimation

= 3 values of regularization parameter: good, too big, too small

= 2 pages of plots



Comparing different variants

True duality gap

True duality gap
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Comparing different variants

True duality gap

True duality gap
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Conclusion 1: gap sampling always helps! (solid vs. dashed)



Comparing different variants

True duality gap

True duality gap
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Conclusion 2: caching always helps in the number of oracle calls
(blue vs. yellow). If oracle is fast, caching can even hurt because of
overheads. If oracle is slow, caching is a must!



Comparing different variants

True duality gap

True duality gap
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Conclusion 3: pairwise steps help reaching high accuracy.
The effect is stronger if the problem is more strongly convex.



Comparing different variants

True duality gap

True duality gap
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Recommendation: use (a) BC-PFW + gap sampling + caching or
(b) BC-FW + gap sampling



Regularization path @ew

= Regularization path = solving the problem for all possible values of
regularization parameter

= Better than the grid search, but usually expensive

= Exact paths are unstable and often intractable

= We construct an e-approximate regularization path

= We use piecewise constant approximation except the first piece

= Algorithm:
1. Initialization: construct the largest breakpoint
2. At a breakpoint, construct the next one such that the gap is smaller than €
3. Optimize with any solver to get gap of kg, k < 1 ( to make a step)
4. Repeat steps 2 and 3 until convergence



Regularization path: results

Time in (h)
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= We can compute the full path for smaller datasets:
HorseSeg-small and OCR-small

= For larger datasets both grid search and paths exceed time limits



Contributions

= Improvements over BCFW:
= adaptive non-uniform sampling of the training objects
= gap-based criterion for caching the oracle calls

= pairwise and away steps in the block-coordinate setting

= Regularization path for SSVM.

Key insight: adaptivity via using the gaps



