Dimensionality reduction

Victor Kitov

Table of Contents

(1) Dimensionality reduction intro
(2) Principal component analysis

Dimensionality reduction

Feature selection / Feature extraction

(a) feature selector

(b) feature extractor

Feature extraction: find transformation of original data which extracts most relevant information for machine learning task.

We will consider unsupervised dimensionality reduction methods, which try to preserve geometrical properties of the data.

Applications of dimensionality reduction

Applications:

- visualization in 2D or 3D
- reduce operational costs (less memory, disk, CPU usage on data transfer)
- remove multi-collinearity to improve performance of machine-learning models

Categorization

Supervision in dimensionality reduction:

- supervised (such as Fisher's direction)
- unsupervied

Mapping to reduced space:

- linear
- non-linear

Table of Contents

(1) Dimensionality reduction intro

(2) Principal component analysis

- Reminder
- Definition
- Applications of PCA
- Application details
- Construction of principal components
- Proof of optimality of principal components
(2) Principal component analysis
- Reminder
- Definition
- Applications of PCA
- Application details
- Construction of principal components
- Proof of optimality of principal components

Reminder

Scalar product reminer

- Here we will assume $\langle a, b\rangle=a^{T} b$
- $\|a\|=\sqrt{\langle a, a\rangle}$
- Signed projection of x on a is equal to $\langle x, a\rangle /\|a\|$
- Unsigned projection (length) of x onto a is equal to $|\langle x, a\rangle| /\|a\|$

Reminder

Useful properties

- For any matrix $X \in \mathbb{R}^{N \times D} X^{T} X \in \mathbb{R}^{D \times D}$ is symmetric and positive semi-definite:
- $\left\{X^{\top} X\right\}_{i j}=\sum_{n=1}^{N} x_{n i} x_{n j}=\sum_{n=1}^{N} x_{n j} x_{n i}=\left\{X^{\top} X\right\}_{j i}$
- $\forall a \in \mathbb{R}^{D}:\left\langle a, X^{T} X a\right\rangle=a^{T} X^{T} X a=\|X a\|^{2} \geq 0$
- General properties:
- if all eigenvalues are unique, eigenvectors are also unique (up to scalar multipliers).
- if $A \succeq 0$ then all its eigenvalues are non-negative
- Since $X^{T} X \succeq 0$ it follows that all its eigenvalues are non-negative.
- We will assume that eigenvalues of $X^{T} X$ are $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{D} \geq 0$.

Reminder

Useful properties

For any $x, b \in \mathbb{R}^{D}$ it holds that:

$$
\frac{\partial\left[b^{T} x\right]}{\partial x}=b
$$

For any $x \in \mathbb{R}^{D}$ and symmetric $B \in \mathbb{R}^{D \times D}$ it holds that:

$$
\frac{\partial\left[x^{\top} B x\right]}{\partial x}=2 B x
$$

(2) Principal component analysis

- Reminder
- Definition
- Applications of PCA
- Application details
- Construction of principal components
- Proof of optimality of principal components

Definition

Best hyperplane fit

- For point x and subspace L denote:
- p-the projection of x on L
- h-orthogonal complement
- $x=p+h,\langle p, h\rangle=0$.

Proposition 1

For x, its projection p and orthogonal complement h

$$
\|x\|^{2}=\|p\|^{2}+\|h\|^{2}
$$

- Prove proposition 1.
- For training set $x_{1}, x_{2}, \ldots x_{N}$ and subspace L we can also find:
- projections: $p_{1}, p_{2}, \ldots p_{N}$
- orthogonal complements: $h_{1}, h_{2}, \ldots h_{N}$.

Principal component analysis

Definition

Best subspace fit

Definition 1

Best-fit k-dimensional subspace for a set of points $x_{1}, x_{2}, \ldots x_{N}$ is a subspace, spanned by k vectors $v_{1}, v_{2}, \ldots v_{k}$, solving

$$
\sum_{n=1}^{N}\left\|h_{n}\right\|^{2} \rightarrow \min _{v_{1}, v_{2}, \ldots v_{k}}
$$

Proposition 2

Vectors $v_{1}, v_{2}, \ldots v_{k}$, solving

$$
\sum_{n=1}^{N}\left\|p_{n}\right\|^{2} \rightarrow \max _{v_{1}, v_{2}, \ldots v_{k}}
$$

also define best-fit k-dimensional subspace.

- Prove 2 using proposition 1.

Definition

Definition of PCA

Definition 2

Principal components $a_{1}, a_{2}, \ldots a_{k}$ are vectors, forming orthonormal basis in the k-dimensional subspace of best fit.

- Properties:
- Not invariant to translation:
- Before applying PCA, it is recommended to center objects:

$$
x \leftarrow x-\mu \text { where } \mu=\frac{1}{N} \sum_{n=1}^{N} x_{n}
$$

- Not invariant to scaling:
- scale features to have unit variance

Definition

Example: line of best fit

- In PCA the sum of squared perpendicular distances to line is minimized:

- What is the difference with least squares minimization in regression?

Definition

Best hyperplane fit

Subspace L_{k} or rank k best fits points $x_{1}, x_{2}, \ldots x_{D}$.
(2) Principal component analysis

- Reminder
- Definition
- Applications of PCA
- Application details
- Construction of principal components
- Proof of optimality of principal components

Dimensionality reduction - Victor Kitov
Principal component analysis

Applications of PCA

Visualization

original data space

Applications of PCA

Data filtering

Remove noise to get a cleaner picture of data distribution:

X. Huo and Jihong Chen (2002). Local linear projection (LLP). First IEEE Workshop on Genomic Signal Processing and Statistics (GENSIPS), Raleigh, NC, October. http://www.gensips.gatech.edu/proceedings/.

Applications of PCA

Economic description of data

Faces database:

Eigenfaces

Eigenvectors are called eigenfaces. Projections on first several eigenfaces describe most of face variability.

Applications of PCA

PCA vs. SDA

Title format: dataset, method (quality of approximation (2)).

Applications of PCA

PCA vs. SDA

Title format: dataset, method (quality of approximation (2)).

Applications of PCA

PCA vs. SDA

Title format: dataset, method (quality of approximation (2)).
(2) Principal component analysis

- Reminder
- Definition
- Applications of PCA
- Application details
- Construction of principal components
- Proof of optimality of principal components

Quality of approximation

Consider vector x. Since all D principal components form a full othonormal basis, x can be written as

$$
x=\left\langle x, a_{1}\right\rangle a_{1}+\left\langle x, a_{2}\right\rangle a_{2}+\ldots+\left\langle x, a_{D}\right\rangle a_{D}
$$

Let p^{K} be the projection of x onto subspace spanned by first K principal components:

$$
p^{K}=\left\langle x, a_{1}\right\rangle a_{1}+\left\langle x, a_{2}\right\rangle a_{2}+\ldots+\left\langle x, a_{K}\right\rangle a_{K}
$$

Error of this approximation is

$$
h^{K}=x-p^{K}=\left\langle x, a_{K+1}\right\rangle a_{K+1}+\ldots+\left\langle x, a_{D}\right\rangle a_{D}
$$

Application details

Quality of approximation

Using that $a_{1}, \ldots a_{D}$ is an orthonormal set of vectors, we get

$$
\begin{gathered}
\|x\|^{2}=\langle x, x\rangle=\left\langle x, a_{1}\right\rangle^{2}+\ldots+\left\langle x, a_{D}\right\rangle^{2} \\
\left\|p^{K}\right\|^{2}=\left\langle p^{K}, p^{K}\right\rangle=\left\langle x, a_{1}\right\rangle^{2}+\ldots+\left\langle x, a_{K}\right\rangle^{2} \\
\left\|h^{K}\right\|^{2}=\left\langle h^{K}, h^{K}\right\rangle=\left\langle x, a_{K+1}\right\rangle^{2}+\ldots+\left\langle x, a_{D}\right\rangle^{2}
\end{gathered}
$$

We can measure how well first K components describe our dataset $x_{1}, x_{2}, \ldots x_{N}$ using relative loss

$$
\begin{equation*}
L(K)=\frac{\sum_{n=1}^{N}\left\|h_{n}^{K}\right\|^{2}}{\sum_{n=1}^{N}\left\|x_{n}\right\|^{2}} \tag{1}
\end{equation*}
$$

or relative score

$$
\begin{equation*}
S(K)=\frac{\sum_{n=1}^{N}\left\|p_{n}^{K}\right\|^{2}}{\sum_{n=1}^{N}\left\|x_{n}\right\|^{2}} \tag{2}
\end{equation*}
$$

Evidently $L(K)+S(K)=1$.

Contribution of individual component

Contribution of a_{k} for explaining x is $\left\langle x, a_{k}\right\rangle^{2}$.
Contribution of a_{k} for explaining $x_{1}, x_{2}, \ldots x_{N}$ is:

$$
\sum_{n=1}^{N}\left\langle x_{n}, a_{k}\right\rangle^{2}
$$

Explained variance ratio:

$$
\frac{\sum_{n=1}^{N}\left\langle x_{n}, a_{k}\right\rangle^{2}}{\sum_{d=1}^{D} \sum_{n=1}^{N}\left\langle x_{n}, a_{d}\right\rangle^{2}}
$$

Explained variance ratio measures relative contribution of component a_{k} to explaining our dataset $x_{1}, \ldots x_{N}$.

How many principal components to select?

- Data visualization: 2 or 3 components.
- Take most significant components until their variance falls sharply down:

- Or take minimum K such that $L(K) \leq t$ or $S(K) \geq 1-t$, where typically $t=0.95$.

Application details

Transformation $\xi \rightleftarrows x$

Dependence between original and transformed features:

$$
\xi=A^{T}(x-\mu), x=A \xi+\mu
$$

where $\mu=\frac{1}{N} \sum_{n=1}^{N} x_{n}$.
Taking first r components $-A_{r}=\left[a_{1}\left|a_{2}\right| \ldots \mid a_{r}\right]$, we get the image of the reduced transformation:

$$
\xi_{r}=A_{r}^{T}(x-\mu)
$$

ξ_{r} will correspond to

$$
\begin{gathered}
x_{r}=A\binom{\xi_{r}}{0}+\mu=A_{r} \xi_{r}+\mu \\
x_{r}=A_{r} A_{r}^{T}(x-\mu)+\mu
\end{gathered}
$$

$A_{r} A_{r}^{T}$ is projection matrix with rank r (follows from the property $\operatorname{rank}\left[A A^{T}\right]=\operatorname{rank}\left[A^{T} A\right]$ for any A).

Application details

Local linear projection

a Horizontal View

Bird Eyes View

a Horizontal View

X. Huo and Jihong Chen (2002). Local linear projection (LLP). First IEEE Workshop on Genomic Signal Processing and Statistics (GENSIPS), Raleigh, NC, October. http://www.gensips.gatech.edu/proceedings/.

Local linear projection

Local linear projection method makes denoised version of original data by locally projecting it onto hyperplane of small rank.

INPUT:

p-local dimensionality of data
K-number of nearest neighbours
for each x_{i} in X :

1) find K nearest neighbours of $x_{i}: x_{j(i, 1)}, \ldots x_{j(i, K)}$
2) find linear hyperplane L_{p} of dimensionality p, describing $x_{j(i, 1)}, \ldots x_{j(i, K)} \#$ hyperplane-subspace with offset
3) let \hat{x}_{i} be the projection of x_{i} onto this hyperplane

OUTPUT:

denoised version of objects $\hat{x}_{1}, \hat{x}_{2}, \ldots \hat{x}_{K}$.
(2) Principal component analysis

- Reminder
- Definition
- Applications of PCA
- Application details
- Construction of principal components
- Proof of optimality of principal components

Constructive definition of PCA

- Principal components $a_{1}, a_{2}, \ldots a_{D} \in \mathbb{R}^{D}$ are found such that

$$
\left\langle a_{i}, a_{j}\right\rangle= \begin{cases}1, & i=j \\ 0 & i \neq j\end{cases}
$$

- $X a_{i}$ is a vector of projections of all objects onto the i-th principal component.
- For any object x its projections onto principal components are equal to:

$$
p=A^{T} x=\left[\left\langle a_{1}, x\right\rangle, \ldots\left\langle a_{D}, x\right\rangle\right]^{T}
$$

where $A=\left[a_{1} ; a_{2} ; \ldots a_{D}\right] \in \mathbb{R}^{D \times D}$.

Constructive definition of PCA

(1) a_{1} is selected to maximize $\left\|X a_{1}\right\|$ subject to $\left\langle a_{1}, a_{1}\right\rangle=1$
(2) a_{2} is selected to maximize $\left\|X a_{2}\right\|$ subject to $\left\langle a_{2}, a_{2}\right\rangle=1$, $\left\langle a_{2}, a_{1}\right\rangle=0$
(3) a_{3} is selected to maximize $\left\|X a_{3}\right\|$ subject to $\left\langle a_{3}, a_{3}\right\rangle=1$, $\left\langle a_{3}, a_{1}\right\rangle=\left\langle a_{3}, a_{2}\right\rangle=0$
etc.

Derivation: 1st component

$$
\left\{\begin{array}{l}
\left\|X_{a_{1}}\right\|^{2} \rightarrow \max _{a_{k}} \tag{3}\\
\left\|a_{1}\right\|=1
\end{array}\right.
$$

Lagrangian of optimization problem (3):

$$
\begin{gathered}
L\left(a_{1}, \mu\right)=a_{1}^{T} X^{T} X a_{1}-\mu\left(a_{1}^{T} a_{1}-1\right) \rightarrow \operatorname{extr}_{a_{1}, \mu} \\
\frac{\partial L}{\partial a_{1}}=2 X^{T} X a_{1}-2 \mu a_{1}=0
\end{gathered}
$$

so a_{1} is selected from a set of eigenvectors of $X^{T} X$.

Derivation: 1st component

Since

$$
\left\|X a_{1}\right\|^{2}=\left(X a_{1}\right)^{T} X a_{1}=a_{1}^{T} X^{T} X a_{1}=\lambda a_{1}^{T} a_{1}=\lambda
$$

a_{1} should be the eigenvector, corresponding to the largest eigenvalue λ_{1}.

Comment: If many many eigenvector directions corrsponding to λ_{1} exist, select arbitrary eigenvector, satisfying constraint of (3).

Derivation: 2nd component

$$
\left\{\begin{array}{l}
\left\|X_{a_{2}}\right\|^{2} \rightarrow \max _{a_{k}} \tag{4}\\
\left\|a_{2}\right\|=1 \\
a_{2}^{T} a_{1}=0
\end{array}\right.
$$

Lagrangian of optimization problem (4):

$$
\begin{gather*}
L\left(a_{2}, \mu\right)=a_{2}^{\top} X^{\top} X a_{2}-\mu\left(a_{2}^{T} a_{2}-1\right)-\alpha a_{1}^{\top} a_{2} \rightarrow \operatorname{extr}_{a_{2}, \mu, \alpha} \\
\frac{\partial L}{\partial a_{2}}=2 X^{\top} X a_{2}-2 \mu a_{2}-\alpha a_{1}=0 \tag{5}
\end{gather*}
$$

Derivation: 2nd component

By multiplying by a_{1}^{T} we obtain:

$$
\begin{equation*}
a_{1}^{T} \frac{\partial L}{\partial a_{1}}=2 a_{1}^{T} X^{T} X a_{2}-2 \mu a_{1}^{T} a_{2}-\alpha a_{1}^{T} a_{1}=0 \tag{6}
\end{equation*}
$$

Since a_{2} is selected to be orthogonal to a_{1} :

$$
2 \mu a_{1}^{T} a_{2}=0
$$

Since $a_{1}^{\top} X^{\top} X_{a_{2}}$ is scalar and a_{1} is eigenvector of $X^{\top} X$:

$$
a_{1}^{T} X^{\top} X a_{2}=\left(a_{1}^{T} X^{\top} X a_{2}\right)^{T}=a_{2}^{T} X^{\top} X a_{1}=\lambda_{1} a_{2}^{T} a_{1}=0
$$

It follows that (6) simplifies to $\alpha a_{1}^{T} a_{1}=\alpha=0$ and (5) becomes

$$
X^{\top} X_{a_{2}}-\mu a_{2}=0
$$

So a_{2} is selected from a set of eigenvectors of $X^{\top} X$.

Derivation: 2nd component

Since

$$
\left\|X_{a_{2}}\right\|^{2}=\left(X_{a_{2}}\right)^{\top} X_{a_{2}}=a_{2}^{\top} X^{\top} X_{a_{2}}=\lambda a_{2}^{\top} a_{2}=\lambda
$$

a_{2} should be the eigenvector, corresponding to second largest eigenvalue λ_{2}.

Comment: If many many eigenvector directions corrsponding to λ_{2} exist, select arbitrary eigenvector, satisfying constraints of (4).

Construction of principal components

Derivation: k-th component

$$
\left\{\begin{array}{l}
\left\|X_{a_{k}}\right\|^{2} \rightarrow \max _{a_{k}} \tag{7}\\
\left\|a_{k}\right\|=1 \\
a_{k}^{T} a_{1}=\ldots=a_{k}^{T} a_{k-1}=0
\end{array}\right.
$$

Lagrangian of optimization problem (7):

$$
\begin{gather*}
L\left(a_{k}, \mu\right)=a_{k}^{T} X^{T} X a_{k}-\mu\left(a_{k}^{T} a_{k}-1\right)-\sum_{j=1}^{k-1} \alpha_{j} a_{k}^{T} a_{j} \rightarrow \operatorname{extr}_{a_{k}, \mu, \alpha_{1}, \ldots \alpha_{k-1}} \\
\frac{\partial L}{\partial a_{k}}=2 X^{T} X a_{k}-2 \mu a_{k}-\sum_{j=1}^{k-1} \alpha_{j} a_{j}=0 \tag{8}
\end{gather*}
$$

Construction of principal components

Derivation: k-th component

By multiplying by a_{i}^{T} for any $i=1,2, \ldots k-1$ we obtain:

$$
\begin{equation*}
a_{i}^{T} \frac{\partial L}{\partial a_{1}}=2 a_{i}^{T} X^{T} X a_{k}-2 \mu a_{i}^{T} a_{k}-\alpha_{1} a_{i}^{T} a_{1}-\ldots-\alpha_{k-1} a_{i}^{T} a_{k-1}=0 \tag{9}
\end{equation*}
$$

Since a_{i} and a_{j} are selected to be orthogonal for $i \neq j$, we have:

$$
2 \mu a_{i}^{T} a_{k}=0, \quad \alpha_{j} a_{i}^{T} a_{j}=0 \forall i \neq j
$$

Since $a_{i}^{T} X^{T} X a_{2}$ is scalar and a_{i} is eigenvector of $X^{\top} X$:

$$
a_{i}^{T} X^{T} X a_{2}=\left(a_{i}^{T} X^{T} X a_{k}\right)^{T}=a_{k}^{T} X^{T} X a_{i}=\lambda_{i} a_{k}^{T} a_{i}=0
$$

It follows that (9) simplifies to $\alpha_{i} a_{i}^{T} a_{i}=\alpha_{i}=0$. Since i was selected arbitrary from $i=1,2, \ldots k-1, \alpha_{1}=\alpha_{2}=\ldots=\alpha_{k-1}=0$ and (8) becomes

$$
X^{T} X a_{k}-\mu a_{k}=0
$$

So a_{k} is selected from a set of eigenvectors of $X^{T} X$.

Derivation: k-th component

Since

$$
\left\|X a_{k}\right\|^{2}=\left(X a_{k}\right)^{T} X a_{k}=a_{k}^{T} X^{T} X a_{k}=\lambda a_{k}^{T} a_{k}=\lambda
$$

a_{k} should be the eigenvector, corresponding to the k-th largest eigenvalue λ_{k}.

Comment: If many many eigenvector directions corrsponding to λ_{k} exist, select arbitrary eigenvector, satisfying constraints of (7).
(2) Principal component analysis

- Reminder
- Definition
- Applications of PCA
- Application details
- Construction of principal components
- Proof of optimality of principal components

Componentwise optimization leads to best fit subspace

Theorem 1

Let L_{k} be the subspace spanned by $a_{1}, a_{2}, \ldots a_{k}$. Then for each $k L_{k}$ is the best-fit k-dimensional subspace for X.

Proof: use induction. For $k=1$ the statement is true by definition since projection maximization is equivalent to distance minimization.
Suppose theorem holds for $k-1$. Let L_{k} be the plane of best-fit of dimension with $\operatorname{dim} L=k$. We can always choose an orthonormal basis of $L_{k} b_{1}, b_{2}, \ldots b_{k}$ so that

$$
\left\{\begin{array}{l}
\left\|b_{k}\right\|=1 \tag{10}\\
b_{k} \perp a_{1}, b_{k} \perp a_{2}, \ldots b_{k} \perp a_{k-1}
\end{array}\right.
$$

by setting b_{k} perpendicular to projections of $a_{1}, a_{2}, \ldots a_{k-1}$ on L_{k}.

Proof of optimality of principal components

Componentwise optimization leads to best fit subspace

Consider the sum of squared projections:

$$
\left\|X b_{1}\right\|^{2}+\left\|X b_{2}\right\|^{2}+\ldots+\left\|X b_{k-1}\right\|^{2}+\left\|X b_{k}\right\|^{2}
$$

By induction proposition $L\left[a_{1}, a_{2}, \ldots a_{k-1}\right]$ is space of best fit of rank $k-1$ and $L\left[b_{1}, \ldots b_{k-1}\right]$ is some space of same rank, so sum of squared projections on it is smaller:

$$
\left\|X b_{1}\right\|^{2}+\left\|X b_{2}\right\|^{2}+\ldots+\left\|X b_{k-1}\right\|^{2} \leq\left\|X_{a_{1}}\right\|^{2}+\left\|X_{a_{2}}\right\|^{2}+\ldots+\left\|X a_{k-1}\right\|^{2}
$$

and

$$
\left\|X b_{k}\right\|^{2} \leq\left\|X a_{k}\right\|^{2}
$$

since b_{k} by (10) satisfies constraints of optimization problem (7) and a_{k} is its optimal solution.

Conclusion

- For $x \in \mathbb{R}^{D}$ there exist D principal components.
- Principal component a_{i} is the i-th eigenvector of $X^{\top} X$, corresponding to i-th largest eigenvalue λ_{i}.
- Sum of squared projections onto a_{i} is $\left\|X a_{i}\right\|^{2}=\lambda_{i}$.
- Explained variance ratio by component a_{i} is equal to

$$
\frac{\lambda_{i}}{\sum_{d=1}^{D} \lambda_{d}}
$$

