ВМК МГУ

Практическое задание 1. Неточный метод Ньютона для ℓ_2 -регуляризованной логистической регрессии.

Курс: Методы оптимизации в машинном обучении, осень 2015

Начало выполнения задания: 19 октября 2015 г.

Срок сдачи: 4 ноября (среда), 23:59.

Среда для выполнения задания: Python.

1 Модель логистической регрессии

Рассматривается задача классификации на два класса. Имеется обучающая выборка $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$, где $\mathbf{x}_i \in \mathbb{R}^D$ — вектор признаков i-го объекта, а $y_i \in \{-1, +1\}$ — его метка класса. Задача заключается в предсказании метки класса y_{new} для нового объекта, представленного своим вектором признаков \mathbf{x}_{new} .

В модели логистической регрессии предсказание метки класса выполняется по знаку линейной функции:

$$y(\mathbf{x}) := \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x}),$$

где $\mathbf{w} \in \mathbb{R}^D$ — параметры модели, настраиваемые в процессе обучения.

Обучение модели осуществляется с помощью минимизации следующей ℓ_2 -регуляризованной функции потерь:

$$F(\mathbf{w}) := \sum_{i=1}^{N} \ln(1 + \exp(-y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i)) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2.$$
 (1)

Здесь $\lambda > 0$ — задаваемый пользователем коэффициент регуляризации. Использование регуляризации позволяет снизить вероятность переобучения алгоритма.

2 Неточный метод Ньютона

Рассматривается задача безусловной оптимизации

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}),\tag{2}$$

где функция f является дважды непрерывно дифференцируемой.

Метод Ньютона строит последовательность точек \mathbf{x}_k , сходящуюся к решению задачи (2). Каждая итерация метода Ньютона имеет вид

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k.$$

Направление оптимизации \mathbf{d}_k находится из следующей системы линейных уравнений:

$$\mathbf{H}_k \mathbf{d}_k = -\mathbf{g}_k,\tag{3}$$

где \mathbf{g}_k и \mathbf{H}_k суть градиент и гессиан функции f в точке \mathbf{x}_k . Длина шага α_k выбирается с помощью поиска по прямой.

В неточном методе Ньютона система (3) решается с помощью метода сопряженных градиентов. В этом случае матрицу \mathbf{H}_k можно в явном виде в памяти не формировать, т. к. сама \mathbf{H}_k методу не нужна; нужна только процедура умножения \mathbf{H}_k на произвольный вектор \mathbf{d}_k . Кроме того, не имеет большого смысла решать систему (3) сильно точно, если текущая точка \mathbf{x}_k находится далеко от оптимума. Поэтому обычно метод сопряженных градиентов останавливают, как только невязка $\mathbf{r}_k := \mathbf{H}_k \mathbf{d}_k + \mathbf{g}_k$ удовлетворяет условию

$$\|\mathbf{r}_k\| \leq \eta_k \|\mathbf{g}_k\|$$
.

Последовательность $\{\eta_k\}$, $\eta_k \in (0,1)$, называется форсирующей последовательностью и обычно выбирается следующим образом:

$$\eta_k := \min \left\{ 0.5, \sqrt{\|\mathbf{g}_k\|} \right\}.$$

3 Формулировка задания

- 1. Реализовать оракул для функции (1). Реализация должна корректно обрабатывать следующие типы исходных данных:
 - (а) плотные данные, заданные в обычном формате numpy-массива;
 - (b) разреженные данные, заданные в формате разреженной scipy-CSR-матрицы.
- 2. Реализовать обычный метод Ньютона. Для выбора длины шага использовать сильные условия Вольфа.
- 3. Проверить работу обычного метода Ньютона на небольшой задаче логистичестической регрессии (1). Построить график сходимости от времени работы. Убедиться, что метод корректно работает как с плотными, так и с разреженными данными.
- 4. Реализовать метод сопряженных градиентов для квадратичной функции. Проверить правильность работы метода на небольшой системе линейных уравнений.
- 5. Экспериментально проверить утверждение о том, что число итераций метода сопряженных градиентов, необходимое для решения системы, примерно равно числу кластеров собственных значений матрицы системы. Построить графики сходимости метода от числа итераций.
- 6. Реализовать функцию умножения гессиана логистической регрессии на произвольный вектор **d**. Реализованная функция должна корректно обрабатывать случай разреженных данных и **не формировать внутри себя саму матрицу гессиана**. Проверить правильность реализации с помощью разностной аппроксимации через градиент:

$$abla^2 \mathbf{F}(\mathbf{w}) \mathbf{d} pprox rac{
abla \mathbf{F}(\mathbf{w} + \epsilon \mathbf{d}) -
abla \mathbf{F}(\mathbf{w})}{\epsilon}.$$

- 7. Реализовать неточный метод Ньютона. Сравнить с точным методом на задаче из п. 3. Построить графики сходимости от времени работы.
- 8. Применить реализованный неточный метод Ньютона для обучения ℓ_2 -регуляризованной логистической регрессии на реальных данных с числом признаком $D \geq 5000$. Сравнить со следующими методами из модуля scipy.optimize:
 - (a) нелинейный метод сопряженных градиентов (функция minimize с параметром method='CG');
 - (b) метод L-BFGS (функция minimize с параметром method='L-BFGS-B').

Построить графики сходимости от времени работы. Сравнение необходимо провести как минимум на трех различных наборах данных.

9. Написать отчет в формате PDF с описанием всех проведенных исследований.

4 Рекомендации по выполнению задания

1. Чтобы каждый раз при вызове оракула функции (1) не вычислять заново произведения $y_i \mathbf{x}_i$, рекомендуется заранее предподсчитать матрицу $\mathbf{Z} := (z_{ij})_{i,j=1}^{N,D}$, элементами которой являются числа

$$z_{ij} := -y_i x_{ij}, \qquad i = 1, \dots, N, \quad j = 1, \dots, D.$$
 (4)

После этого исходную матрицу ${f X}$ из памяти можно удалить.

Если матрица X является разреженной, то для быстрого вычисления Z можно умножить X слева на матрицу $Y := \mathrm{diag}(y)$. Для формирования разреженной диагональной матрицы удобно использовать функцию dia_matrix из модуля scipy.sparse.

- 2. При поиске по прямой для нахождения точки α_k , удовлетворяющей сильным условиям Вольфа, можно использовать функцию line_search из модуля scipy.optimize.
- 3. Графики сходимости методов рекомендуется строить в логарифмической шкале по оси y.

- 4. Случайную симметричную матрицу \mathbf{A} , имеющую заданный спектр \mathbf{s} , можно сгенерировать через спектральное разложение:
 - (а) Сгенерировать случайную ортогональную матрицу Q:

```
\begin{array}{ll} \text{from numpy import random as npr} \\ \text{from scipy.linalg import orth} \\ Q = \text{npr.randn}(n, n) \\ Q = \text{orth}(Q) \end{array}
```

- (b) Взять $\mathbf{A} := \mathbf{Q} \mathbf{S} \mathbf{Q}^{\mathsf{T}}$, где $\mathbf{S} := \operatorname{diag}(\mathbf{s})$.
- 5. Реальные данные можно скачать с сайта LIBSVM [1]. Для выполнения задания подойдут любые из следующих наборов: news20.binary, rcv1.binary, gisette, real-sim, kdd2010, url, webspam, splice-site.

Загрузить данные можно с помощью функции load_svmlight_file из модуля sklearn.datasets. Функция всегда выдает матрицу $\mathbf X$ в формате разреженной scipy-CSR-матрицы. Если данные на самом деле разреженными не являются, рекомендуется перевести $\mathbf X$ в формат numpy-массива. Это можно сделать с помощью метода toarray.

6. Замерить время работы методов из модуля scipy.optimize по итерациям можно с помощью передачи параметра callback в функцию minimize. При этом удобно использовать следующую обертку для функции minimize:

```
from scipy.optimize import minimize
from time import time
from numpy. linalg import norm
def write_hist(hist, elaps, f, norm_g):
     hist [ 'elaps'].append(elaps)
hist ['f'].append(f)
     hist ['norm_g'].append(norm_g)
def minimize_wrapper(func, x0, mydisp=False, **kwargs):
    hist = {'elaps': [], 'f': [], 'norm_g': []}
    if mydisp: print('%9s %15s %15s' % ('elaps', 'f', 'norm_g'))
     aux = { 'tstart': time(), 'elaps': 0}
     def callback(x):
           aux['elaps',] += time() - aux['tstart']
           f, g = func(x)
          norm_g = norm(g, np.inf)
          write_hist(hist, aux['elaps'], f, norm_g)
if mydisp: print('%9d %15.6e %15.6e' % (aux['elaps'], f, norm_g))
aux['tstart'] = time()
     \operatorname{callback}(x0) # scipy optimizers don't use the 'callback' for the initial point
     out = minimize(func, x0, jac=True, callback=callback, **kwargs)
     return out, hist
```

Пример запуска метода L-BFGS с помощью функции-обертки:

```
hist = minimize_wrapper(func, x0, mydisp=True, method='L-BFGS-B', options={'ftol': 0})[1]
```

5 Оформление задания

Выполненное задание следует отправить письмом по agpecy bayesml@gmail.com с заголовком письма

```
«[МОМО15] Задание 1, Фамилия Имя».
```

Убедительная просьба присылать выполненное задание только один раз с окончательным вариантом. Также убедительная просьба строго придерживаться заданных ниже прототипов реализуемых функций.

1. Оракул функции логистической регрессии (1):

Модуль:	lossfuncs
Функция:	logreg(w, Z, regcoef, hess=False)

Параметры:	w: numpy.ndarray
	Точка вычисления, <i>D</i> -мерный вектор.
	Z: numpy.ndarray ИЛИ scipy.sparse.csr_matrix
	Матрица \mathbf{Z} , заданная (4) , $(N \times D)$ -матрица.
	regcoef: float
	Коэффициент регуляризации $\lambda > 0$.
	hess: bool, ОПЦИОНАЛЬНО
	Вычислять дополнительно гессиан или нет.
Возврат:	f: float
	Значение функции (1) в точке w.
	g: numpy.ndarray
	Градиент функции (1) в точке w , D -мерный вектор.
	H: numpy.ndarray, ТОЛЬКО ПРИ hess=True
	Гессиан функции (1) в точке w , ($D \times D$)-матрица.

2. Умножение гессиана функции логистической регрессии (1) на произвольный вектор:

Модуль:	lossfuncs
Функция:	logreg_hessvec(w, d, Z, regcoef)
Параметры:	w: numpy.ndarray Точка вычисления, <i>D</i> -мерный вектор. d: numpy.ndarray Произвольный <i>D</i> -мерный вектор.
	2: numpy.ndarray или scipy.sparse.csr_matrix Матрица \mathbf{Z} , заданная (4), $(N \times D)$ -матрица. regcoef: float Коэффициент регуляризации $\lambda > 0$.
Возврат:	Нd: numpy.ndarray Произведение гессиана функции (1) в точке w на вектор d.

3. Обычный метод Ньютона:

Модуль:	optim
Функция:	newton(func, x0, disp=False, maxiter=500, tol=1e-5, c1=1e-4, c2=0.9)
Параметры:	<pre>func: callable func(x)</pre>
	Оракул минимизируемой функции.
	Принимает:
	x: numpy.ndarray
	Точка вычисления, <i>n</i> -мерный вектор.
	Возвращает:
	f: float
	Значение функции в точке х.
	g: numpy.ndarray
	Градиент функции в точке x , n -мерный вектор.
	H: numpy.ndarray
	Гессиан функции в точке x , $(n \times n)$ -матрица.
	x0: numpy.ndarray
	Начальная точка, <i>п</i> -мерный вектор.
	disp: bool, ОПЦИОНАЛЬНО
	Отображать прогресс метода по итерациям или нет.
	maxiter: int, ОПЦИОНАЛЬНО
	Максимальное число итераций метода.
	tol: float, ОПЦИОНАЛЬНО
	Точность оптимизации по ℓ_∞ -норме градиента.
	c1: float, ОПЦИОНАЛЬНО

	Константа c_1 в первом условии Вольфа.
	c2: float, ОПЦИОНАЛЬНО
	Константа c_2 во втором условии Вольфа.
Возврат:	x: numpy.ndarray
	Найденная оценка минимума, <i>п</i> -мерный вектор.
	hist: dict
	История процесса оптимизации по итерациям. Словарь со следующими полями:
	elaps: list of floats
	Время, пройденное с начала оптимизации.
	f: list of floats
	Значение функции.
	norm_g: list of floats
	ℓ_∞ -норма градиента.

4. Метод сопряженных градиентов:

Модуль:	optim
Функция:	cg(matvec, b, x0, disp=False, tol=1e-5, maxiter=None)
Параметры:	matvec: callable matvec(d)
	Функция умножения матрицы системы на произвольный вектор а.
	Принимает:
	d: numpy.ndarray
	Произвольный n -мерный вектор.
	Возвращает:
	Ad: numpy.ndarray
	Произведение матрицы системы на вектор d, n-мерный вектор.
	b: numpy.ndarray
	Правая часть системы, n -мерный вектор.
	x0: numpy.ndarray
	Начальная точка, <i>п</i> -мерный вектор.
	disp: bool, ОПЦИОНАЛЬНО
	Отображать прогресс метода по итерациям или нет.
	tol: float, ОПЦИОНАЛЬНО
	Точность оптимизации по ℓ_{∞} -норме невязки.
	maxiter: int ИЛИ None, ОПЦИОНАЛЬНО
	Максимальное число итераций метода. Если $None$, то выбрать равным n .
Возврат:	x: numpy.ndarray
	Найденная оценка решения системы, n -мерный вектор.
	hist: dict
	История процесса оптимизации по итерациям. Словарь со следующими полями:
	norm_r: list of floats
	ℓ_∞ -норма невязки.

5. Неточный метод Ньютона:

Модуль:	optim
Функция:	hfn(func, x0, hessvec=None, disp=False, maxiter=500, tol=1e-5, c1=1e-4, c2=0.9)
Параметры:	func: callable func(x)
	Оракул минимизируемой функции.
	Принимает:
	x: numpy.ndarray
	Точка вычисления, <i>п</i> -мерный вектор.
	Возвращает:
	f: float
	Значение функции в точке х.
	g: numpy.ndarray

I	
	Градиент функции в точке x , n -мерный вектор.
	x0: numpy.ndarray
	Начальная точка, n -мерный вектор.
	hessvec: callable hessvec(x, d) или None, ОПЦИОНАЛЬНО
	Функция умножения гессиана в точке х на произвольный вектор d.
	Принимает:
	x: numpy.ndarray
	Точка вычисления, <i>п</i> -мерный вектор.
	d: numpy.ndarray
	Произвольный n -мерный вектор.
	Возвращает:
	Hd: numpy.ndarray
	Произведение гессиана в точке x на вектор d , n -мерный вектор.
	Если None, то использовать разностную аппроксимацию через градиент.
	disp: bool, ОПЦИОНАЛЬНО
	Отображать прогресс метода по итерациям или нет.
	maxiter: int, ОПЦИОНАЛЬНО
	Максимальное число итераций метода.
	tol: float, ОПЦИОНАЛЬНО
	Точность оптимизации по ℓ_{∞} -норме градиента.
	c1: float, ОПЦИОНАЛЬНО
	Константа c_1 в первом условии Вольфа.
	c2: float, ОПЦИОНАЛЬНО
	Константа c_2 во втором условии Вольфа.
Возврат:	x: numpy.ndarray
	Найденная оценка минимума, <i>п</i> -мерный вектор.
	hist: dict
	История процесса оптимизации по итерациям. Словарь со следующими полями:
	elaps: list of floats
	Время, пройденное с начала оптимизации.
	f: list of floats
	Значение функции.
	norm_g: list of floats
	ℓ_∞ -норма градиента.
	1 1 1 Later Land

Список литературы

[1] LIBSVM Data: Classification, Regression, and Multi-label.— http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.