Математические методы анализа текстов

Introduction to machine translation

Потапенко Анна Александровна

14 ноября 2018 г.

Machine Translation

is [letJərəs] adj geli, wollüstig etJəri 5 Geliheti f ttənl s Lesepult at ttja(r)| 1. s 1. Vorlesung f Vor-lüber, to vor) 2. Strahredigt f alten; einen Vortrag halten (*m* yor jdm) III. at 1. einen Vortrag alten; einen Vortrag halten (*m* jdm) 2. abkanzeln; lecture eatte s Vortragsreise f, lec-turer s 1. Vortragende(r) f m, Red-z 1. Universität) Lehrbeauftrag ad¹

s abr de light-emitting diode *f*, LED-display *s* Leuchtdio

s 1.Leiste f_r vorspringende m od nt 2. (Felsen Riff nt $\sigma(r)] s(com: general -) Haupt-$ ger line <math>s(wus) Hilfslinie ffind)Schutz m 2. (MAR) Lee(sei-

1. Blutegel *m* 2. (*fig*) Schma-*f*)

uich, Porree *m* **L** *s* anzüglicher Blick **II**. *vi* cken (*at* auf) **2**.schielen (*at*

left-wing [leftwid] and like left-winger [-a(c)] shall an an

kei, a. MANT 7 OUTUDEDT II 6. SUUS 7736 Etappe 5, on one's - s auf den Sans hend; be all -s (Mersch) hot Remeas sen sein; be on one's last -s (Mersch) hot Remeas dem letzten Loch pfelfen; give s.o. a. s (MS) jdm unter die Arme gelfen; mas have a - to stand on etw nich tas (fam) jdm unt een Arm rehmen; häbs, (fam) jdn auf den Arm rehmen; häbs, auf eigenen Füßen stehen; stretch wa -s sich die Beine vertreten II. (/jam) ken **leg** [leg] I. *s* 1. beln *m* 2. (*K*04₆) ke **3.** Strumpt', Hosenbeln *m* 4. (Steletik *m* 5. Tisch-, Stuthbeln *m* 6. Stuzz *m* 5. Annal 5.

legal [1] 2. rechtlich Rechtsweg • steps age vorgehen; adviser Rec m; aid Rec gebühren fpl, Rechtsanspruch eg.acy

pl; ~ currency tel; ~ depart.. tity [o person] Rechts., Gesetze

¹⁰⁰ 100 [led3abl] ad/lesbar; leserlich
1090:101 [lid3an] s Legion; fut Foreign Legion die Fremdenlegion; legion-ary [lid3an] s Legionärskrankflet (
1090:101 [s Gesetze erlassen; for s.th. etw berücksichtigen; legis-late [led3:slart] (S Gesetzgebung () eggis-late [led3:slart] () s Gesetzgebung () eggis-laterier [led3:slart] () s Gesetzgeben m; legis-laterier [led3:slart] () s Gesetzgeben m; legit]
2. Gemüse m; leggtum] ad (Jām) s fremhageloul leg-room [legiurm] s 1. Hülse(Infruch) (2.-s Gemüse m; legiurm] s 1. Hülse(Infruch) (2.-s Gemüse m; legiurm] s 1. Hülse(Infruch) (2.-s Gemüse m; legiurm and 2 (I Milse).

~ action (2

1; 12/10

gentleman of ~ Privatier m; icht berufstätige Frau; leisure ceitgestaltung f; leivre hours s pl Mußestur adj: the ~ classes die Freizeitgestaltung s pl l nem par vertice s activities s vre cent vire cent red ['leʒa Leute: ler

halten; lengthen [1 gern II. v länger wer length-wise [leng der Länge nach; leng schweiß, langatmig, lang; go to any ~ vol cken; go to great ~s er / 3.(Stoff) Sti.L. 4.(Srom) (Pferde) Schließtich, erde, kürzt; by a -der Länge nag ·library

lang leni-ence, leni-ency de, Nachsicht f lens lenz

S. lend

lent (lent) s. le Lent (lent) s. Fa Lent (lent) s Fa len-til (lent) s Leo (li:au) s Inanain'

leop.ard [lepad] sLe leo.tard [li:ato:d] s1 lep-rosy leper ['lepa(r)] s L ge(r) f n Aussatz

lep-rous lezbian L.

krank, aus les-bian [" bierin f

ist_

2.

Parallel data

Parallel corpora:

- Europarl
- Movie subtitles
- Translated news, books
- Wikipedia (comparable)
- <u>http://opus.lingfil.uu.se/</u>

Lot's of problems with data:

- Noisy
- Specific domain
- Rare language pairs
- Not aligned, not enough

- How to compare two arbitrary translations?
- Low agreement rate even between reviewers
- BLEU score a popular automatic technique

- How to compare two arbitrary translations?
- Low agreement rate even between reviewers
- BLEU score a popular automatic technique

Reference: E-mail was sent on Tuesday.

System output: The letter was sent on Tuesday.

- How to compare two arbitrary translations?
- Low agreement rate even between reviewers
- BLEU score a popular automatic technique

Reference:E-mail was sent on Tuesday.System output:The letter was sent on Tuesday.

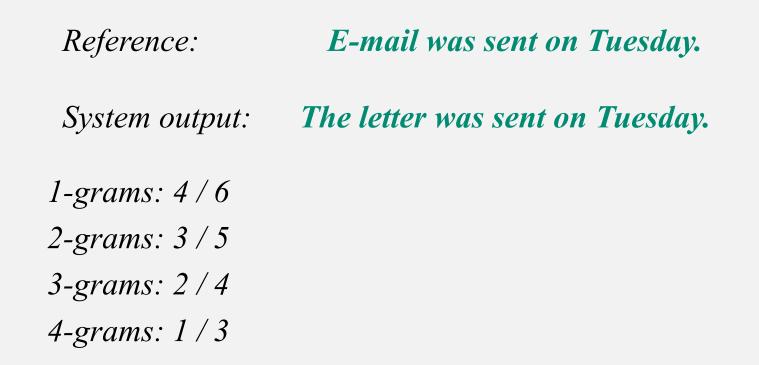
1-grams: 4 / 6

- How to compare two arbitrary translations?
- Low agreement rate even between reviewers
- BLEU score a popular automatic technique

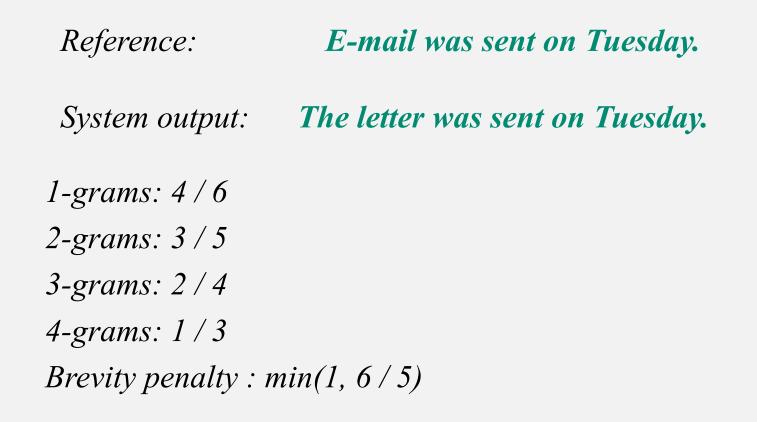
Reference:E-mail was sent on Tuesday.System output:The letter was sent on Tuesday.1-grams: 4 / 6

2-grams: 3 / 5

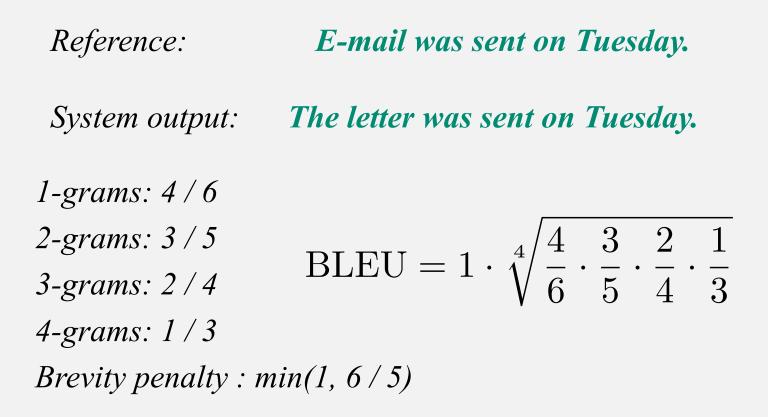
- How to compare two arbitrary translations?
- Low agreement rate even between reviewers
- BLEU score a popular automatic technique



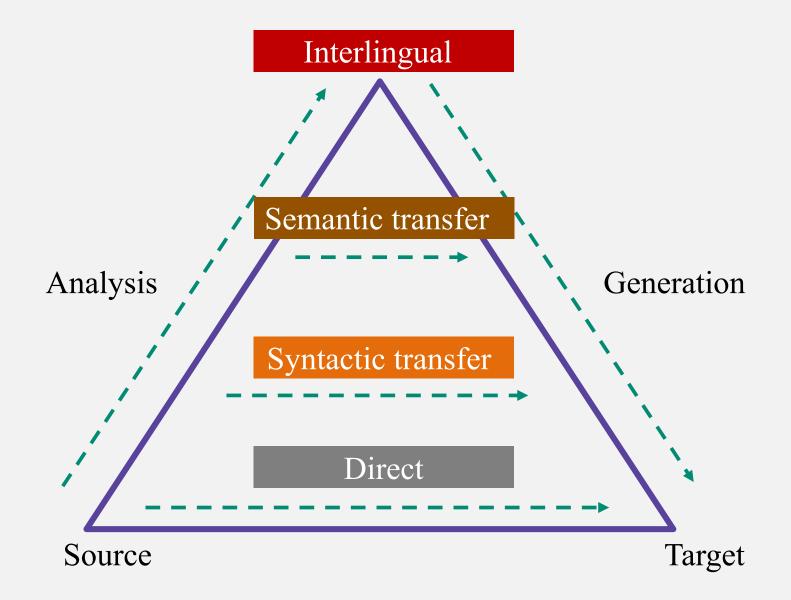
- How to compare two arbitrary translations?
- Low agreement rate even between reviewers
- BLEU score a popular automatic technique

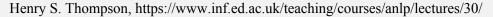


- How to compare two arbitrary translations?
- Low agreement rate even between reviewers
- BLEU score a popular automatic technique



The mandatory slide





Roller-coaster of machine translation

1954 Georgetown IBM experiment Russian to English:

• Claimed that MT would be solved within 3-5 years.

1966 ALPAC report:

• Concluded that MT was too expensive and ineffective.

Two main paradigms

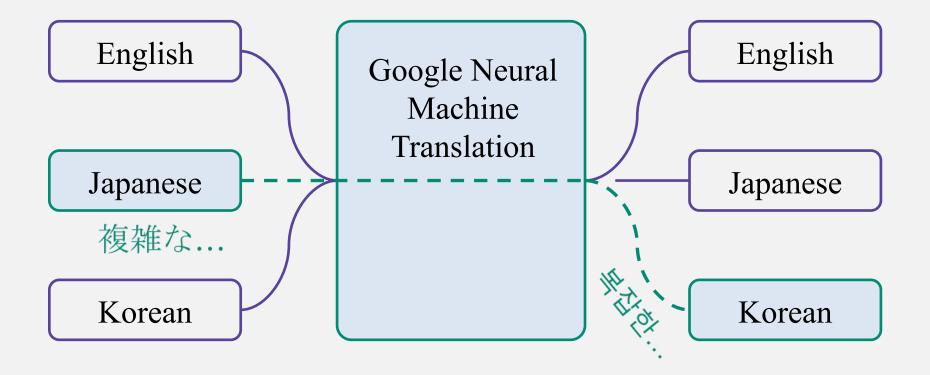
Statistical Machine Translation (SMT):

- 1988 Word-based models (IBM models)
- 2003 Phrase-based models (Philip Koehn)
- 2006 Google Translate (and Moses, next year)

Neural Machine Translation (NMT):

- 2013 First papers on pure NMT
- 2015 NMT enters shared tasks (WMT, IWSLT)
- 2016 Launched in production in companies

Zero-shot translation



Noisy channel: said in English, received in French

The main equation

- **Given:** French (foreign) sentence *f*,
- **Find:** English translation *e*:

$$e^* = \operatorname*{argmax}_{e \in E} p(e|f)$$

1993 Brown et al., "The mathematics of statistical machine translation"

The main equation

- **Given:** French (foreign) sentence *f*,
- **Find:** English translation *e*:

$$e^* = \underset{e \in E}{\operatorname{argmax}} p(e|f) = \underset{e \in E}{\operatorname{argmax}} \frac{p(f|e)p(e)}{p(f)} =$$

1993 Brown et al., "The mathematics of statistical machine translation"

The main equation

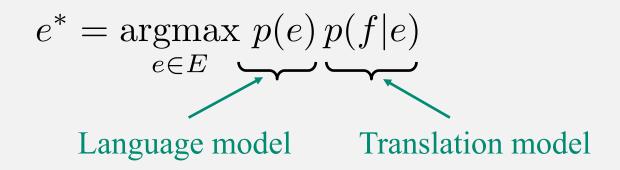
- **Given:** French (foreign) sentence *f*,
- **Find:** English translation *e*:

$$e^* = \underset{e \in E}{\operatorname{argmax}} p(e|f) = \underset{e \in E}{\operatorname{argmax}} \frac{p(f|e)p(e)}{p(f)} =$$

$$= \underset{e \in E}{\operatorname{argmax}} p(e)p(f|e)$$

1993 Brown et al., "The mathematics of statistical machine translation"

Why is it easier to deal with?



- p(e) models the *fluency* of the translation
- p(f|e) models the *adequacy* of the translation
- argmax is the search problem implemented by a *decoder*

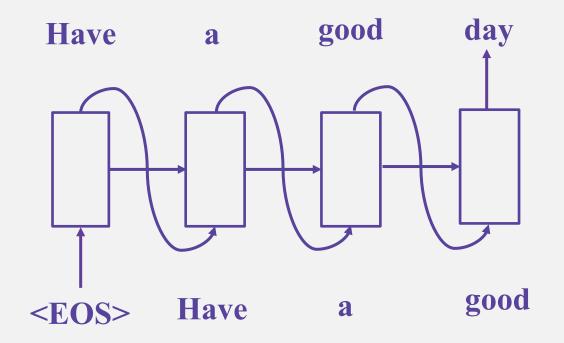
Noisy Chanel



Language model: p(e)

$$p(\mathbf{e}) = p(e_1)p(e_2|e_1)\dots p(e_k|e_1\dots e_{k-1})$$

N-gram models or neural networks:

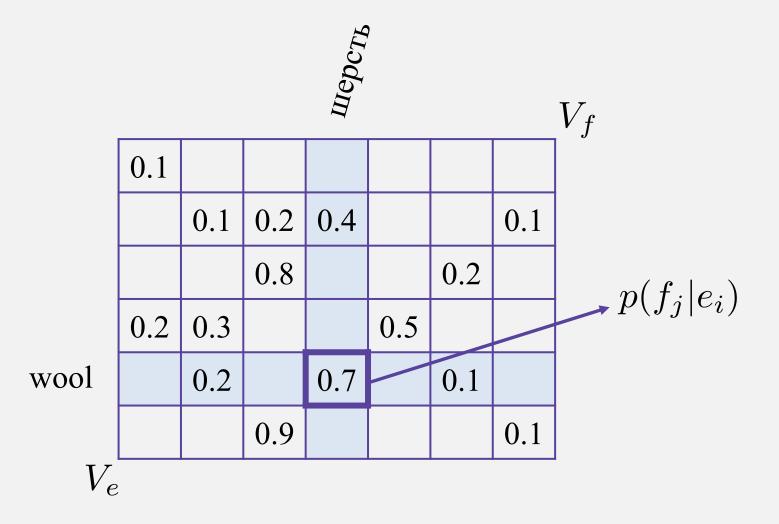


$$p(f|e) = p(f_1, f_2, \dots f_J|e_1, e_2, \dots e_I)$$

f (Foreign): Крику много, а шерсти мало.

e (English): Great cry and little wool.

We could learn translation probabilities for separate words:



But how to build the probability for the whole sentences?

$$p(f|e) = \begin{array}{c} \text{Some Magic} \\ \text{Factorization} \end{array} \left[\begin{array}{c} p(f_j|e_i) \end{array} \right]$$

But how to build the probability for the whole sentences?

$$p(f|e) = \begin{array}{c} \text{Some Magic} \\ \text{Factorization} \end{array} \left[\begin{array}{c} p(f_j|e_i) \end{array} \right]$$

Reorderings:

Крику много, а шерсти мало. Great cry and little wool.

Word Alignments

One-to-many and many-to-one:

Words can disappear or appear from nowhere:

У каждой пули свое назначение.

Word Alignment Models

Word Alignments



"As English not all languages words in the same order put. Hmmmm.» - Yoda

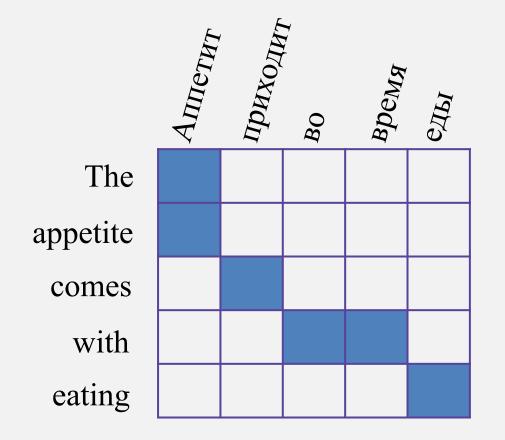
Word alignment task

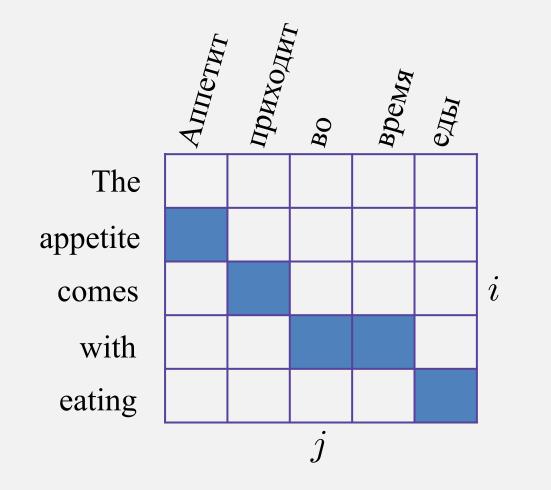
Given a corpus of (e, f) sentence pairs:

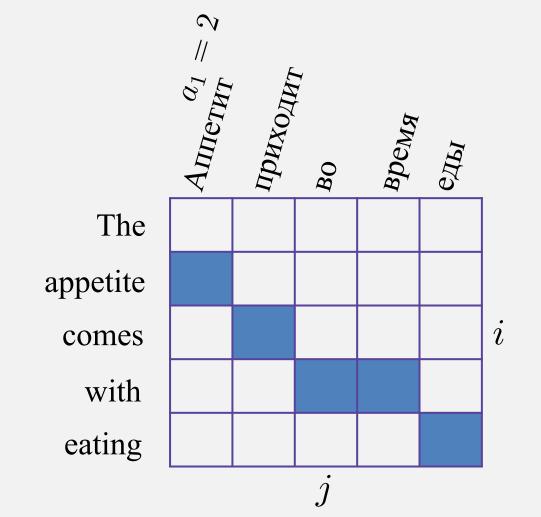
- English, source: $e = (e_1, e_2, \dots e_I)$
- Foreign, target: $f = (f_1, f_2, \dots, f_J)$

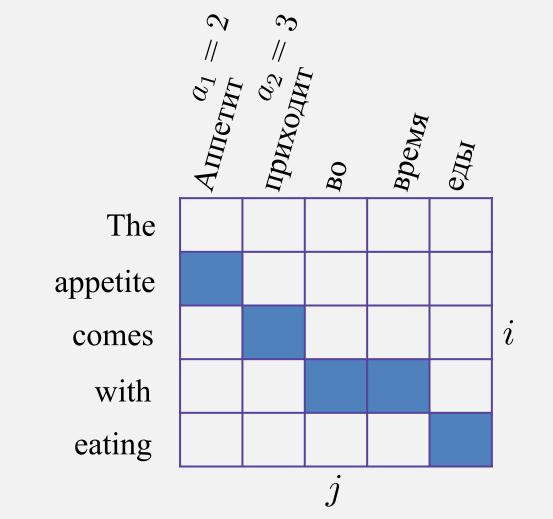
Predict:

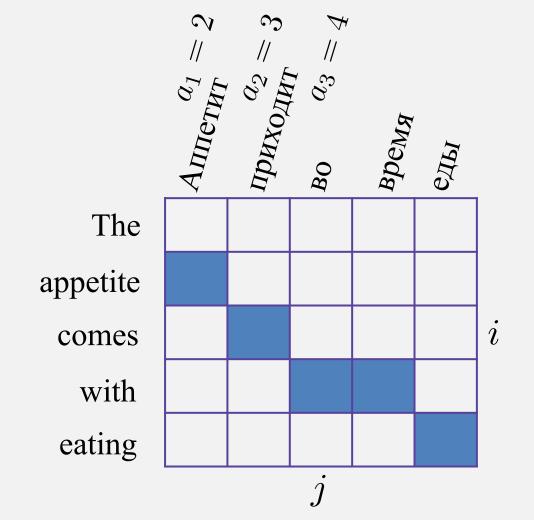
- Alignments **a** between **e** and **f**:
 - e: The appetite comes with eating. *I* / *I* /

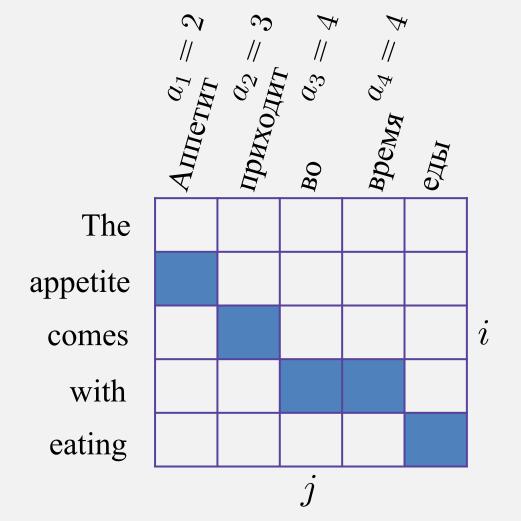


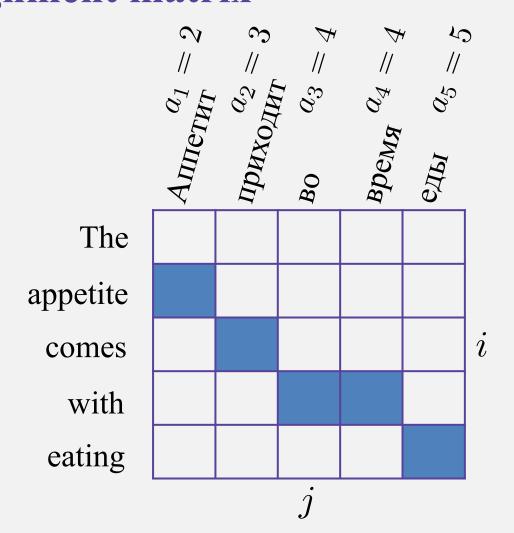












Probabilistic model (generative story)
Given e, model the generation of f:

 $p(f, a|e, \Theta) = ?$

- How do we parametrize the model?
- Is it too complicated or too unrealistic?

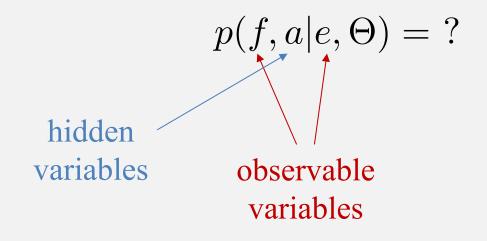
Probabilistic model (generative story)
Given e, model the generation of f:

$$p(f, a | e, \Theta) = ?$$

observable
variables

- How do we parametrize the model?
- Is it too complicated or too unrealistic?

Probabilistic model (generative story)
Given e, model the generation of f:



- How do we parametrize the model?
- Is it too complicated or too unrealistic?

1. Probabilistic model (generative story)

Given **e**, model the generation of **f**:



- How do we parametrize the model?
- Is it too complicated or too unrealistic?

2. Likelihood maximization for the incomplete data:

$$p(f|e,\Theta) = \sum_{a} p(f,a|e,\Theta) \to \max_{\Theta}$$

2. Likelihood maximization for the incomplete data:

$$p(f|e,\Theta) = \sum_{a} p(f,a|e,\Theta) \to \max_{\Theta}$$

3. EM-algorithm to the rescue!

Iterative process:

- E-step: estimates posterior probabilities for alignments
- M-step: updates Θ parameters of the model

Generative story

$$p(f,a|e) = p(J|e)$$

1. Choose the length of the foreign sentence

Generative story

$$p(f, a|e) = p(J|e) \prod_{j=1}^{J} p(a_j|a_1^{j-1}, f_1^{j-1}, J, e) \times$$

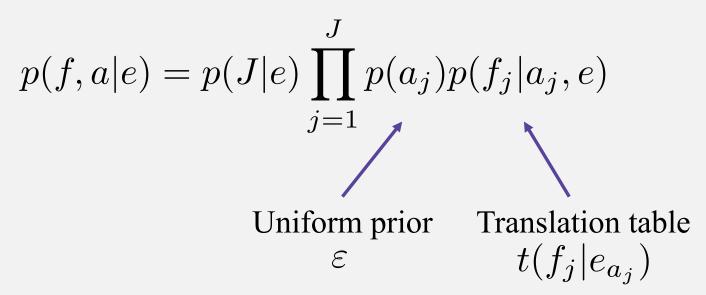
- 1. Choose the length of the foreign sentence
- 2. Choose an alignment for each word (given lots of things)

Generative story

$$p(f, a|e) = p(J|e) \prod_{j=1}^{J} p(a_j|a_1^{j-1}, f_1^{j-1}, J, e) \times p(f_j|a_j, a_1^{j-1}, f_1^{j-1}, J, e)$$

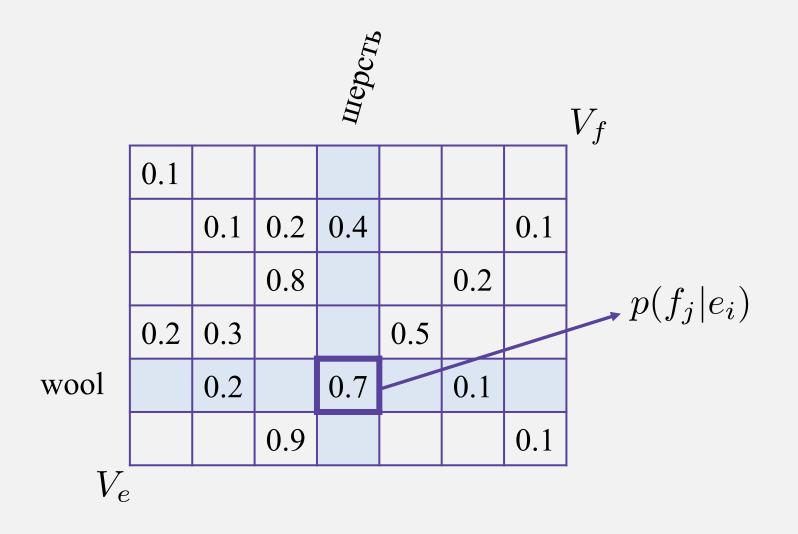
- 1. Choose the length of the foreign sentence
- 2. Choose an alignment for each word (given lots of things)
- 3. Choose the word (given lots of things)

IBM model 1

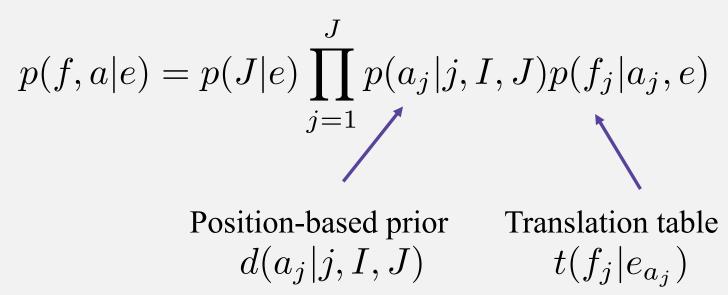


- + The model is simple and has not too many parameters
- The alignment prior does not depend on word positions

Translation table



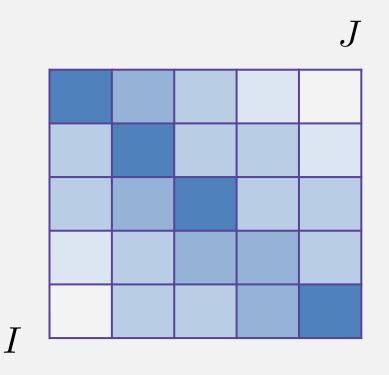
IBM model 2



- + The alignments depend on position-based prior
- Quite a lot of parameters for the alignments

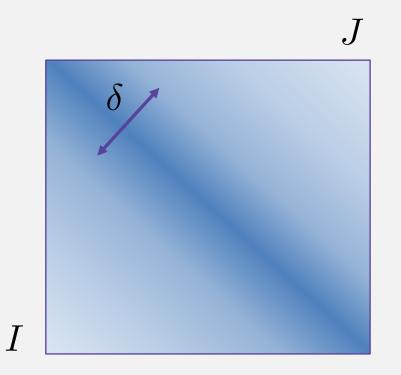
Position-based prior

- For each pair of the **lengths** of the sentences:
 - $I \times J$ matrix of probabilities



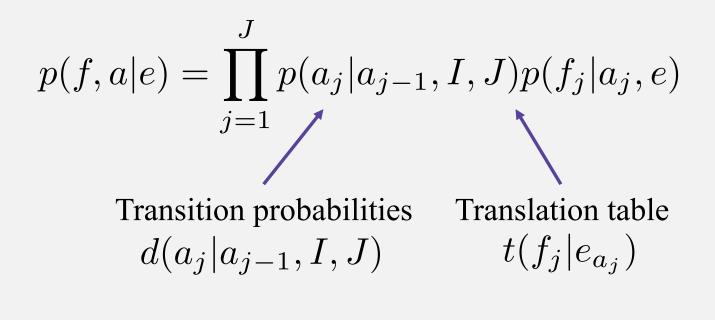
Re-parametrization, Dyer et. al 2013

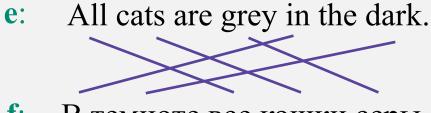
- If we know, it's going to be diagonal let's model it diagonal!
- Much less parameters, easier to train on small data



Dyer et al. A Simple, Fast, and Effective Reparameterization of IBM Model 2, 2013

HMM for the prior



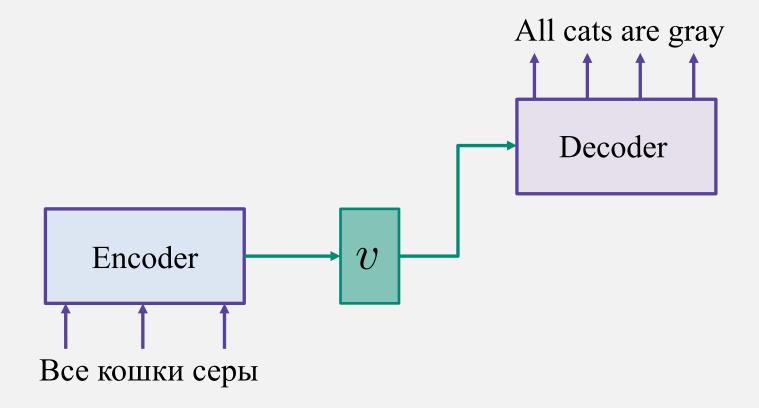


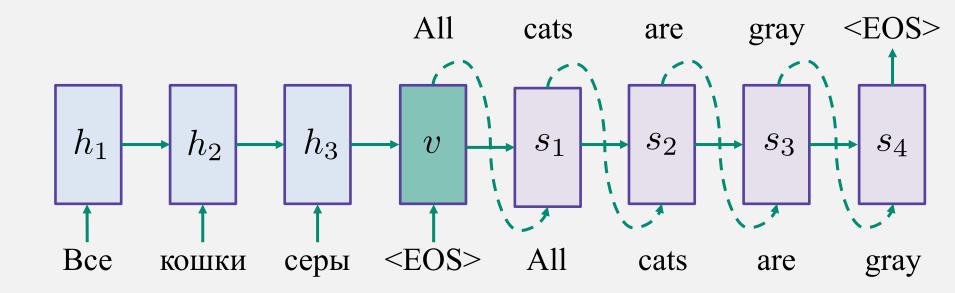
f: В темноте все кошки серы.

Resume

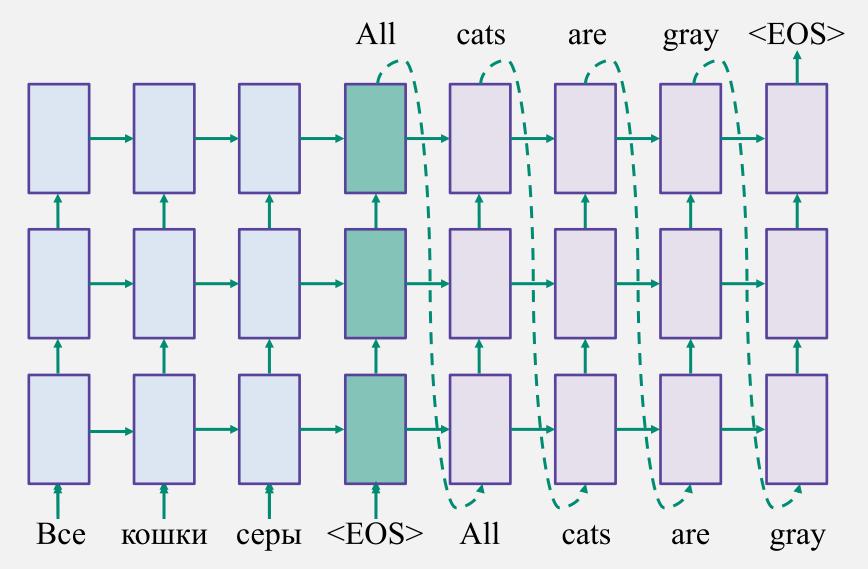
- IBM models first working systems of MT
- Lot's of problems with models 1 and 2:
 - How to deal with *spurious words*
 - How to control *fertility*
 -
- Most importantly, how to do many-to-many alignments?
 - Phrased-based machine translation (Koehn's book)

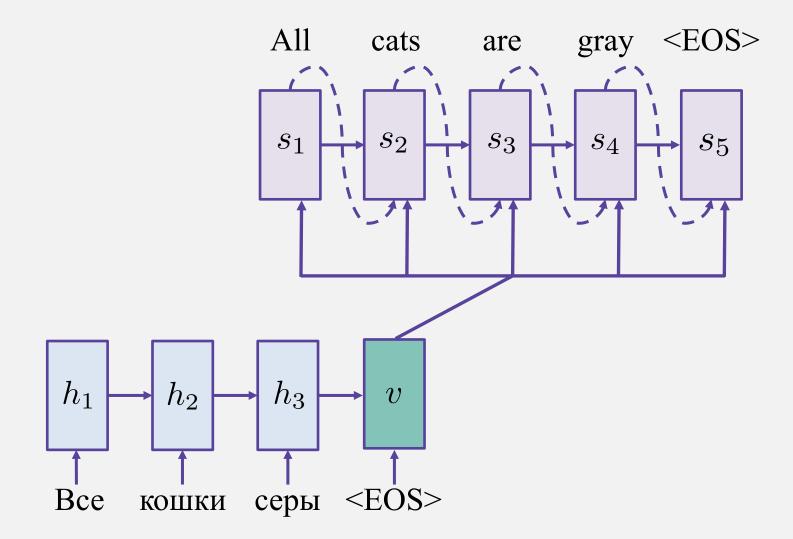
Encoder-decoder architecture





Ilya Sutskever, Oriol Vinyals, Quoc V. Le. Sequence to Sequence Learning with Neural Network, 2014.





Cho et. al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, 2014.

$$p(y_1, \dots, y_J | x_1, \dots, x_I) = \prod_{j=1}^J p(y_j | v, y_1, \dots, y_{j-1})$$

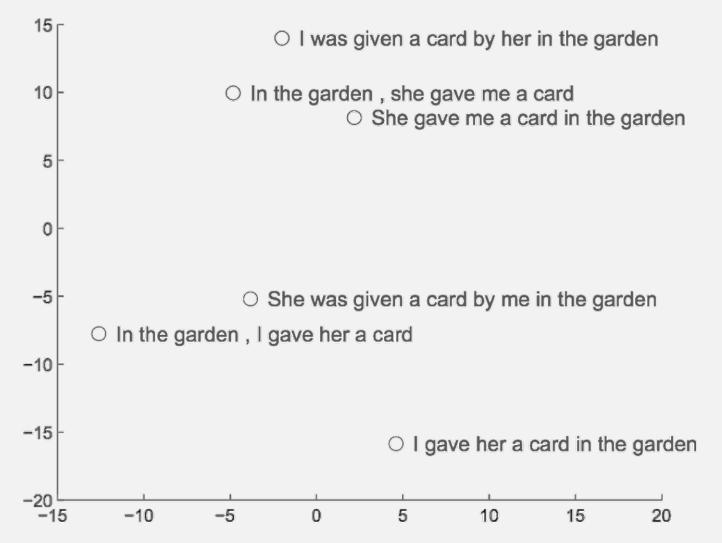
- Encoder: maps the source sequence to the hidden vector RNN: $h_i = f(h_{i-1}, x_i)$ $v = h_I$
- **Decoder:** performs language modeling given this vector

RNN:
$$s_j = g(s_{j-1}, [y_{j-1}, v])$$

• **Prediction** (the simplest way):

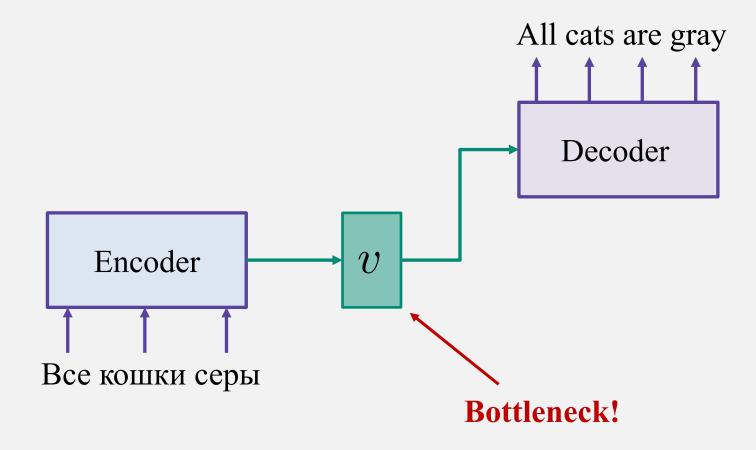
$$p(y_j|v, y_1, \dots, y_{j-1}) = softmax \left(Us_j + b \right)$$

Hidden representations are good...



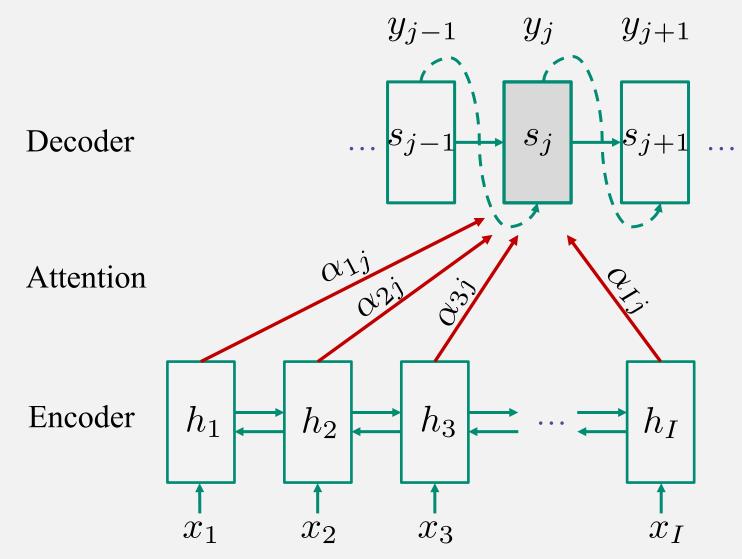
Ilya Sutskever, Oriol Vinyals, Quoc V. Le. Sequence to Sequence Learning with Neural Network, 2014.

... but still a bottleneck



Attention mechanism

Attention mechanism



Bahdanau et. al - Neural Machine Translation by jointly learning to align and translate, 2015.

Attention mechanism

• Encoder states are weighted to obtain the representation relevant to the decoder state:

$$v_j = \sum_{i=1}^{I} \alpha_{ij} h_i$$

• The weights are learnt and should find the most relevant encoder positions:

$$\alpha_{ij} = \frac{\exp(sim(h_i, s_{j-1}))}{\sum_{i'=1}^{I} \exp(sim(h_{i'}, s_{j-1}))}$$

How to compute attention weights?

• Additive attention:

$$sim(h_i, s_j) = w^T \tanh(W_h h_i + W_s s_j)$$

• Multiplicative attention:

$$sim(h_i, s_j) = h_i^T W s_j$$

• Dot product also works:

$$sim(h_i, s_j) = h_i^T s_j$$

Put all together

$$p(y_1, \dots, y_J | x_1, \dots, x_I) = \prod_{j=1}^J p(y_j | v_j, y_1, \dots, y_{j-1})$$

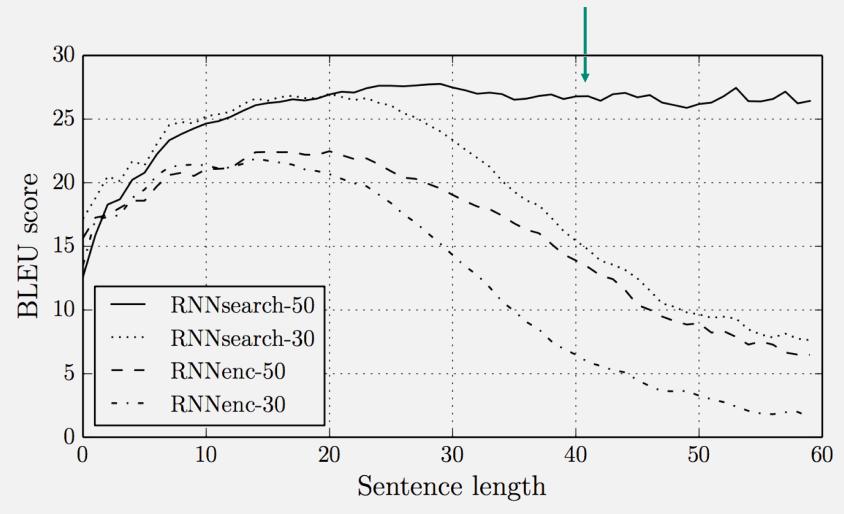
• Still encoder-decoder architecture with RNNs:

$$h_i = f(h_{i-1}, x_i)$$
 $s_j = g(s_{j-1}, [y_{j-1}, v_j])$

• But the source representations differ for each position j of the decoder.

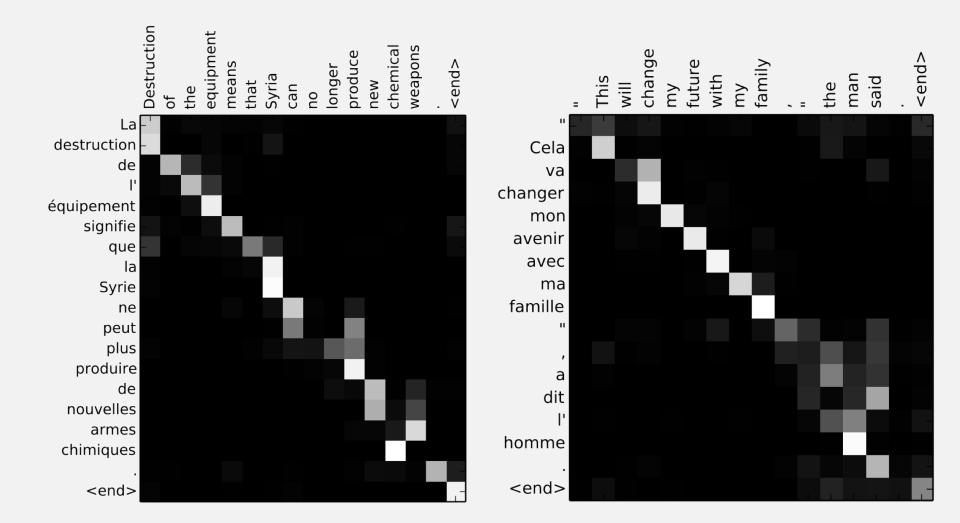
Helps for long sentences

NMT with attention



Bahdanau et. al. Neural Machine Translation by jointly learning to align and translate, 2015.

Example: attention (alignments)



Bahdanau et. al. Neural Machine Translation by jointly learning to align and translate, 2015.

Is the attention similar to what humans do?

• For humans: saves time

Attention saves time when reading (i.e. we look only to the relevant parts of the sentence).

• For machines: wastes time

To compute the attention weights, the model carefully examines ALL the positions, thus wastes even more time.

Local attention

1. Find the most relevant position a_j in the source

- Monotonic alignments: $a_j = j$
- Predictive alignments: $a_j = I \cdot \sigma(b^T \tanh(Ws_j))$

2. Attend only positions within a window $[\mathbf{a_j} - \mathbf{h}; \mathbf{a_j} + \mathbf{h}]$

- Compute scores as usual
- Probably multiply by a Gaussian centered in a_j

Luong et. al. Effective Approaches to Attention-based Neural Machine Translation, 2015.

Global vs local attention

System	Perplexity	BLEU
global (location)	6.4	19.3
global (dot)	6.1	20.5
global (mult)	6.1	19.5
local-m (dot)	>7.0	X
local-m (mult)	6.2	20.4
local-p (dot)	6.6	19.6
local-p (mult)	5.9	20.9

Luong et. al. Effective Approaches to Attention-based Neural Machine Translation, 2015.

Global vs local attention

	System	Perplexity	BLEU
$Ws_j \rightarrow$	global (location)	6.4	19.3
	global (dot)	6.1	20.5
$h_i^T W s_j \rightarrow$	global (mult)	6.1	19.5
	local-m (dot)	>7.0	X
	local-m (mult)	6.2	20.4
	local-p (dot)	6.6	19.6
	local-p (mult)	5.9	20.9

Luong et. al. Effective Approaches to Attention-based Neural Machine Translation, 2015.

How to deal with a vocabulary?

Outline

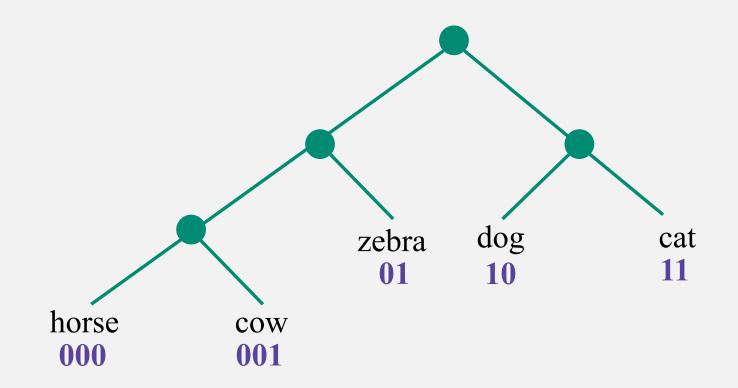
- Computing *softmax* for a large vocabulary is slow!
 - Hierarchical softmax
- Even a large vocabulary has *OOV words*:
 - Copy mechanism
 - Sub-word modeling
 - Word-character hybrid models
 - Byte-pair encoding

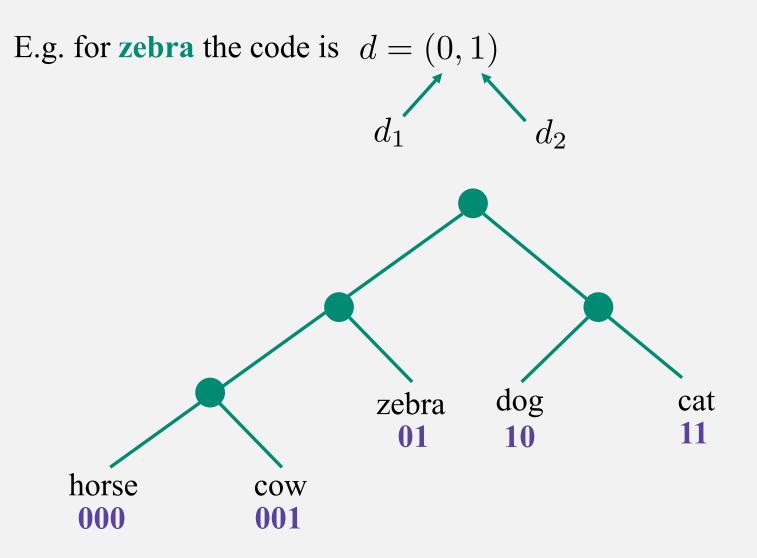
Outline

- Computing *softmax* for a large vocabulary is slow!
 - Hierarchical softmax
- Even a large vocabulary has *OOV words*:
 - Copy mechanism
 - Sub-word modeling
 - Word-character hybrid models
 - Byte-pair encoding

Each word is uniquely represented by a binary code:

• 0 means "go left", 1 means "go right"



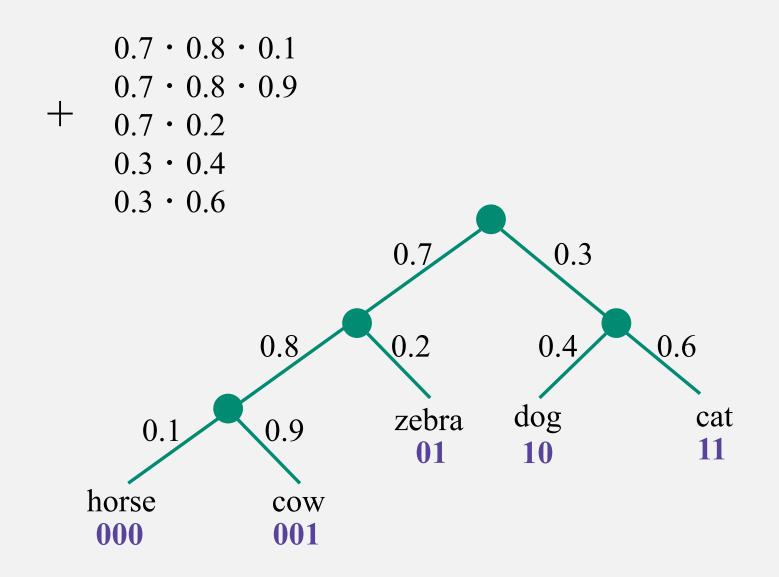


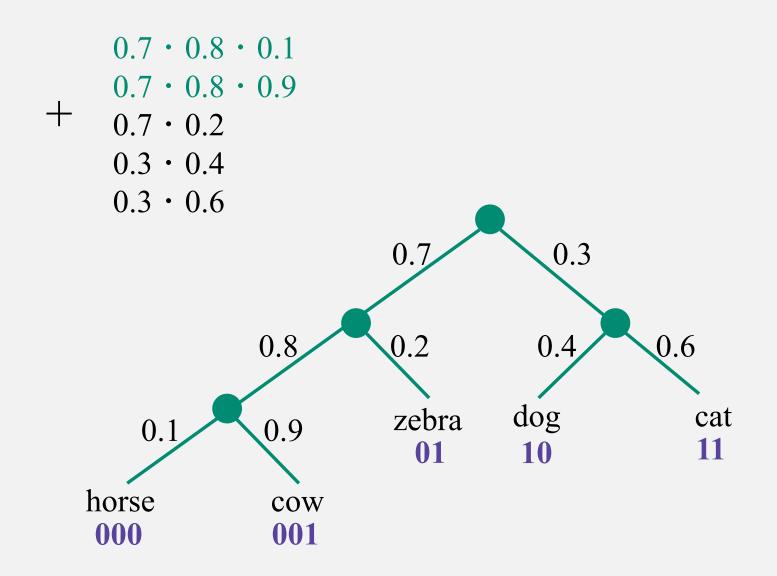
Scaling softmax

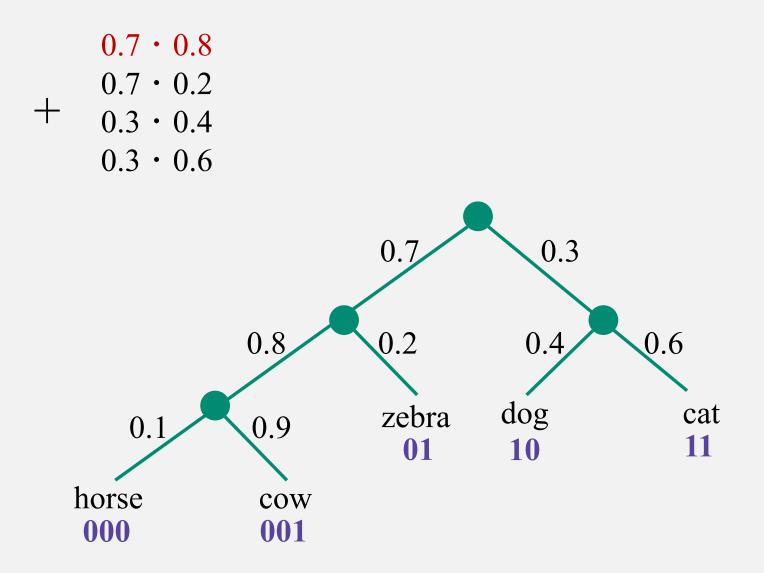
Express the probability of a word (zebra) as a product of probabilities of the binary decisions along the path (d_1, d_2) .

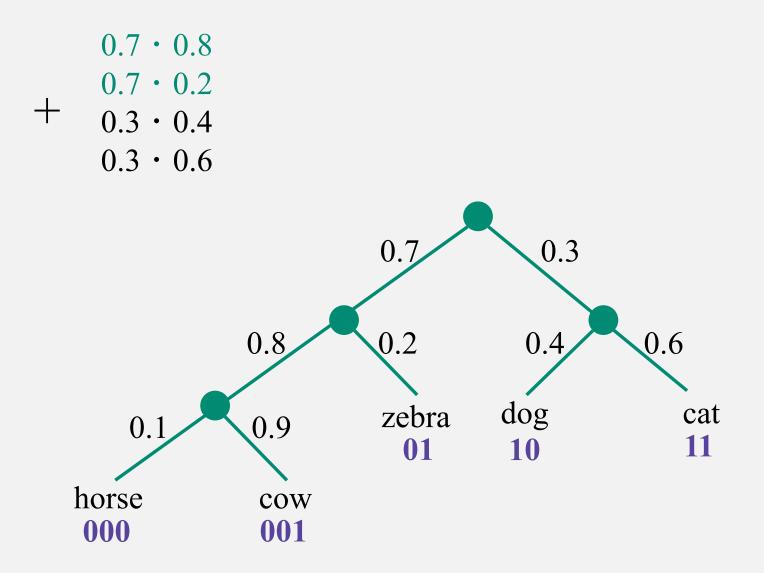
$$p(w_n = w | w_1^{n-1}) = \prod_i p(d_i | w_1^{n-1})$$

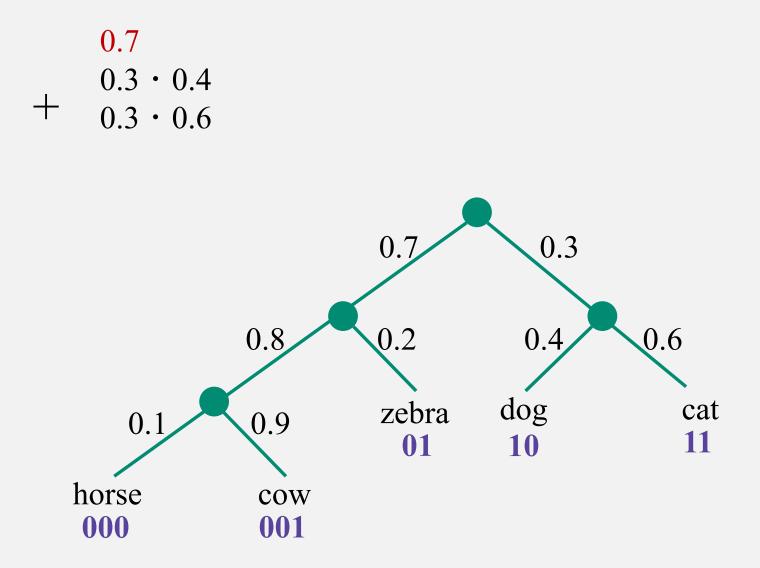
Do you believe that it sums to 1?

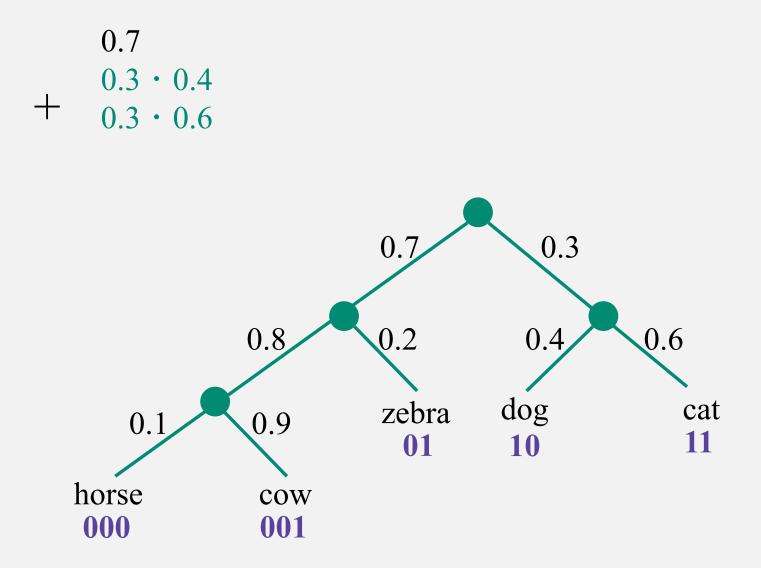


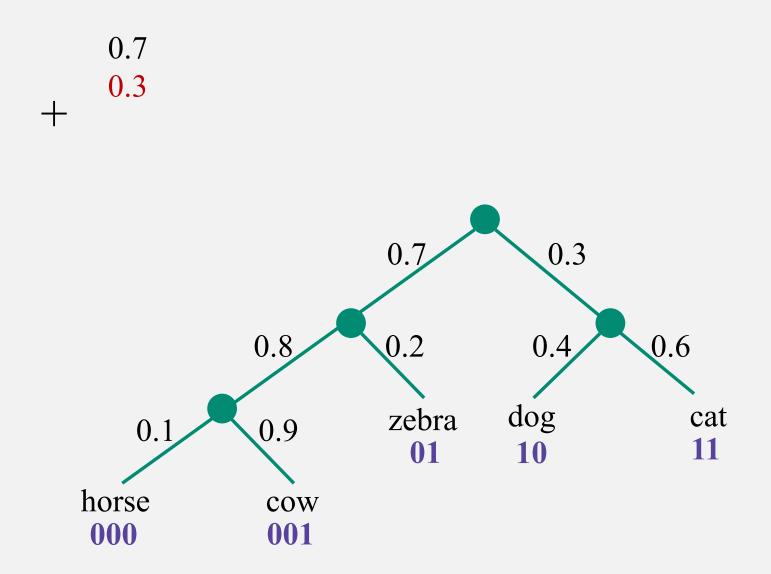


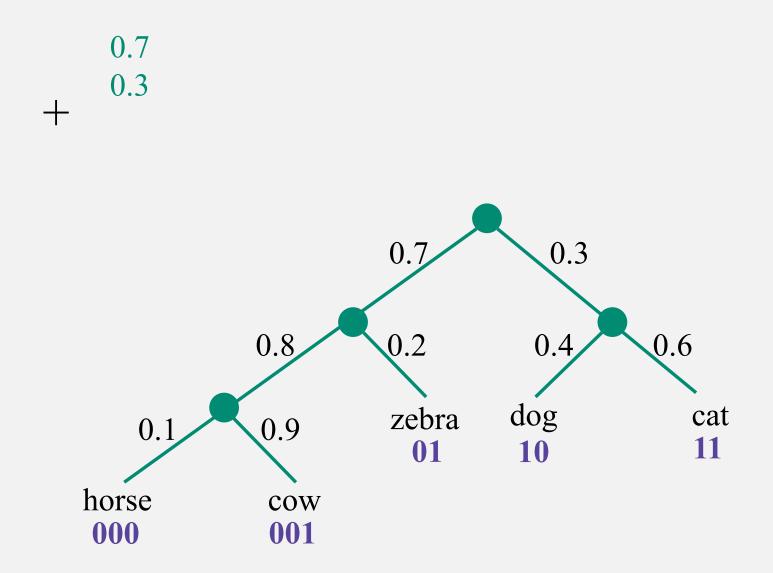












1.0 +**Congratulations!** 0.3 0.7 0.2 0.6 0.8 0.4 dog cat zebra 0.9 0.1 11 10 01 horse cow 000 001

Model binary decisions along the path in the tree:

$$p(w_n = w | w_1^{n-1}) = \prod_i p(d_i | w_1^{n-1})$$

How to construct a tree (balanced vs. semantic):

- Based on some pre-built ontology
- Based on semantic clustering from data
- Huffman tree
- Random

Outline

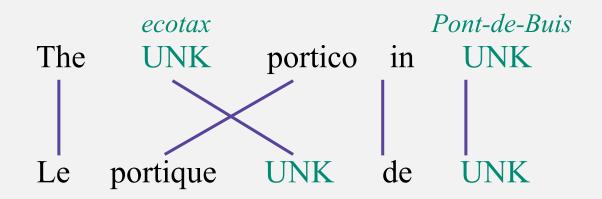
- Computing *softmax* for a large vocabulary is slow!
 - Hierarchical softmax
- Even a large vocabulary has *OOV words*:
 - Copy mechanism
 - Sub-word modeling
 - Word-character hybrid models
 - Byte-pair encoding

- Scaling *softmax* is insufficient!
- What do we do with OOV words?
 - Names, numbers, rare words...

ecotaxPont-de-BuisTheUNKportico inUNK

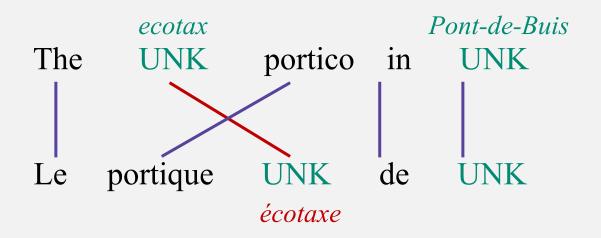
- Scaling *softmax* is insufficient!
- What do we do with OOV words?
 - Names, numbers, rare words...

- Scaling *softmax* is insufficient!
- What do we do with OOV words?
 - Names, numbers, rare words...

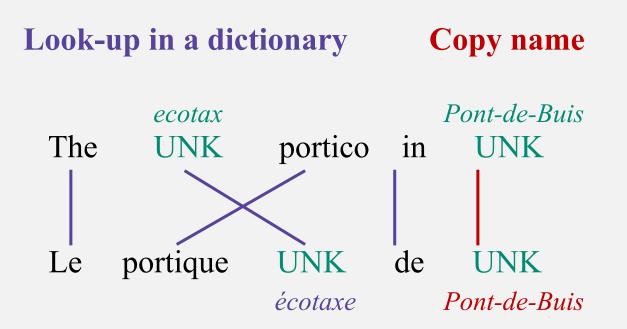


- Scaling *softmax* is insufficient!
- What do we do with OOV words?
 - Names, numbers, rare words...

Look-up in a dictionary



- Scaling *softmax* is insufficient!
- What do we do with OOV words?
 - Names, numbers, rare words...



Algorithm:

- Provide word alignments in train time
- Learn relative positions for UNK tokens with NMT
- Post-process the translation:
 - Copy the source word
 - Look up in a dictionary

Simple, but super useful technique!

Towards open vocabulary

Still problems:

- Transliteration: Christopher → Kryštof
- Multi-word alignment: Solar system → Sonnensystem
- Rich morphology: nejneobhospodařovávatelnějšímu
- Informal spelling: gooooood morning !!!!!

Outline

- Computing *softmax* for a large vocabulary is slow!
 - Hierarchical softmax
- Even a large vocabulary has *OOV words*:
 - Copy mechanism
 - Sub-word modeling
 - Word-character hybrid models
 - Byte-pair encoding

Outline

- Computing *softmax* for a large vocabulary is slow!
 - Hierarchical softmax
- Even a large vocabulary has *OOV words*:
 - Copy mechanism
 - Sub-word modeling
 - Word-character hybrid models
 - Byte-pair encoding

Character-based models

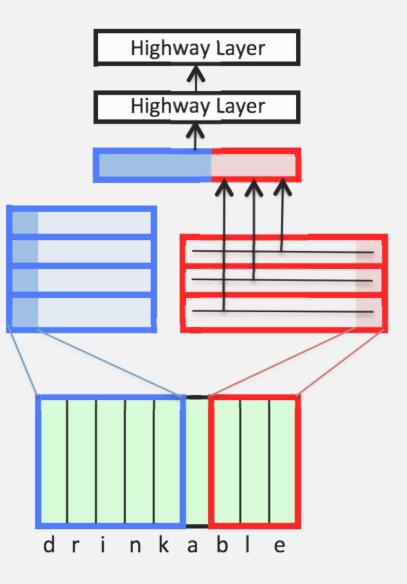
Character-based encoder is good for source languages with rich morphology!

- Bi-LSTMs to build word embeddings from characters
- CNNs on characters

Ling, et. al. Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation. EMNLP 2015.

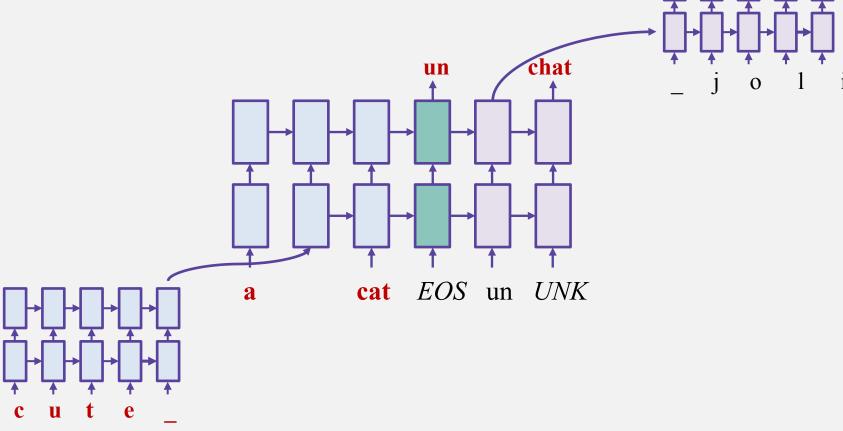
Kim, et. al. Character-Aware Neural Language Models. AAAI 2016.

Marta R. Costa-jussà and José A. R. Fonollosa. Characterbased Neural Machine Translation. ACL 2016.



Hybrid models: the best of two worlds

- Work mostly on words level
- Go to characters when needed



0

Thang Luong and Chris Manning. Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models. ACL 2016.

Outline

- Computing *softmax* for a large vocabulary is slow!
 - Hierarchical softmax
- Even a large vocabulary has *OOV words*:
 - Copy mechanism
 - Sub-word modeling
 - Word-character hybrid models
 - Byte-pair encoding

- Simple way to handle open vocabulary:
 - Start with characters
 - Iteratively replace the most frequent pair with one unit

- Simple way to handle open vocabulary:
 - Start with characters
 - Iteratively replace the most frequent pair with one unit

She sells seashells by the seashore

- Simple way to handle open vocabulary:
 - Start with characters
 - Iteratively replace the most frequent pair with one unit

- Simple way to handle open vocabulary:
 - Start with characters
 - Iteratively replace the most frequent pair with one unit

- Simple way to handle open vocabulary:
 - Start with characters
 - Iteratively replace the most frequent pair with one unit

- Simple way to handle open vocabulary:
 - Start with characters
 - Iteratively replace the most frequent pair with one unit

- Simple way to handle open vocabulary:
 - Start with characters
 - Iteratively replace the most frequent pair with one unit

- Simple way to handle open vocabulary:
 - Start with characters
 - Iteratively replace the most frequent pair with one unit

- Simple way to handle open vocabulary:
 - Start with characters
 - Iteratively replace the most frequent pair with one unit

- Simple way to handle open vocabulary:
 - Start with characters
 - Iteratively replace the most frequent pair with one unit

- Simple way to handle open vocabulary:
 - Start with characters
 - Iteratively replace the most frequent pair with one unit

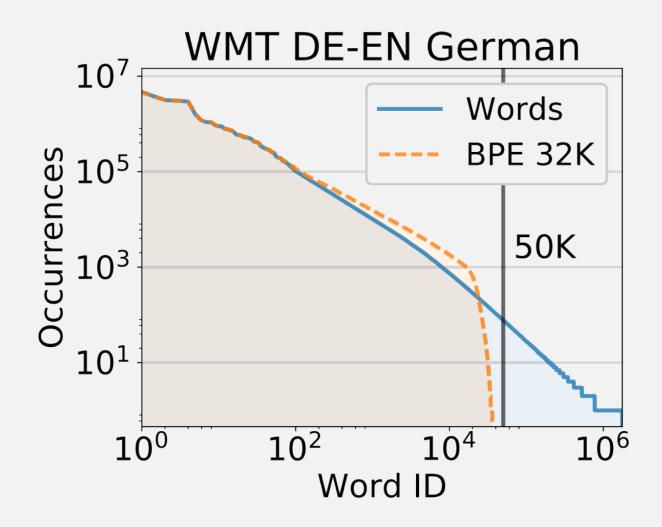
Sh e _ se ll s _ sea sh e ll s _ b y _ t h e _ sea sh o r e _

- Simple way to handle open vocabulary:
 - Start with characters
 - Iteratively replace the most frequent pair with one unit

Sh e _ se ll s _ sea sh e ll s _ b y _ t h e _ sea sh o r e _

- End whenever you reach the vocabulary size limit
- Stick to that vocabulary of sub-word units
- Apply the same algorithm to test sentences

Why is it so useful?



Denkowski, Neubig. Stronger Baselines for Trustable Results in Neural Machine Translation, 2017.

BLEU score comparison

	WMT			IWSLT	
	DE-EN	EN-FI	RO-EN	EN-FR	CS-EN
Words 50K	31.6	12.6	27.1	33.6	21.0
BPE 32K	33.5	14.7	27.8	34.5	22.6
BPE 16K	33.1	14.7	27.8	34.8	23.0

- Byte-pair encoding improves BLEU score
- It is a nice and simple way to handle the vocabulary
- Very common trick in modern NMT

Denkowski, Neubig. Stronger Baselines for Trustable Results in Neural Machine Translation, 2017.