Introduction to machine translation

Потапенко Анна Александровна
14 ноября 2018 г.

Machine Translation

Parallel data

Parallel corpora:

- Europarl
- Movie subtitles
- Translated news, books
- Wikipedia (comparable)
- http://opus.lingfil.uu.se/

Lot's of problems with data:

- Noisy
- Specific domain
- Rare language pairs
- Not aligned, not enough

Evaluation

- How to compare two arbitrary translations?
- Low agreement rate even between reviewers
- BLEU score - a popular automatic technique

Evaluation

- How to compare two arbitrary translations?
- Low agreement rate even between reviewers
- BLEU score - a popular automatic technique

Reference: E-mail was sent on Tuesday.

System output: \quad The letter was sent on Tuesday.

Evaluation

- How to compare two arbitrary translations?
- Low agreement rate even between reviewers
- BLEU score - a popular automatic technique

Reference: E-mail was sent on Tuesday.

System output: \quad The letter was sent on Tuesday.
1-grams: 4 / 6

Evaluation

- How to compare two arbitrary translations?
- Low agreement rate even between reviewers
- BLEU score - a popular automatic technique

Reference: E-mail was sent on Tuesday.

System output: The letter was sent on Tuesday.
1-grams: $4 / 6$
2-grams: $3 / 5$

Evaluation

- How to compare two arbitrary translations?
- Low agreement rate even between reviewers
- BLEU score - a popular automatic technique

Reference: E-mail was sent on Tuesday.

System output: The letter was sent on Tuesday.

$$
\begin{aligned}
& \text { 1-grams: } 4 \text { / } 6 \\
& \text { 2-grams: } 3 / 5 \\
& \text { 3-grams: } 2 / 4 \\
& \text { 4-grams: } 1 / 3
\end{aligned}
$$

Evaluation

- How to compare two arbitrary translations?
- Low agreement rate even between reviewers
- BLEU score - a popular automatic technique

Reference: E-mail was sent on Tuesday.

System output: \quad The letter was sent on Tuesday.

```
1-grams:4/6
2-grams: 3/5
3-grams: 2/4
4-grams: 1/3
Brevity penalty:min(1,6/5)
```


Evaluation

- How to compare two arbitrary translations?
- Low agreement rate even between reviewers
- BLEU score - a popular automatic technique

Reference: E-mail was sent on Tuesday.

System output: \quad The letter was sent on Tuesday.

$$
\begin{aligned}
& \text { 1-grams: } 4 / 6 \\
& \text { 2-grams: } 3 / 5 \quad \text { BLEU } \\
& \text { 3-grams: } 2 / 4 \\
& \text { 4-grams: } 1 / 3 \\
& \text { Brevity penalty : } \min (1,6 / 5)
\end{aligned}
$$

The mandatory slide

Roller-coaster of machine translation

1954 Georgetown IBM experiment Russian to English:

- Claimed that MT would be solved within 3-5 years.

1966 ALPAC report:

- Concluded that MT was too expensive and ineffective.

Two main paradigms

Statistical Machine Translation (SMT):

- 1988 - Word-based models (IBM models)
- 2003 - Phrase-based models (Philip Koehn)
- 2006 - Google Translate (and Moses, next year)

Neural Machine Translation (NMT):

- 2013 - First papers on pure NMT
- 2015 - NMT enters shared tasks (WMT, IWSLT)
- 2016 - Launched in production in companies

Zero-shot translation

Noisy channel: said in English, received in French

The main equation

- Given: French (foreign) sentence f,
- Find: English translation e :

$$
e^{*}=\underset{e \in E}{\operatorname{argmax}} p(e \mid f)
$$

The main equation

- Given: French (foreign) sentence f,
- Find: English translation e :

$$
e^{*}=\underset{e \in E}{\operatorname{argmax}} p(e \mid f)=\underset{e \in E}{\operatorname{argmax}} \frac{p(f \mid e) p(e)}{p(f)}=
$$

The main equation

- Given: French (foreign) sentence f,
- Find: English translation e :

$$
\begin{gathered}
e^{*}=\underset{e \in E}{\operatorname{argmax}} p(e \mid f)=\underset{e \in E}{\operatorname{argmax}} \frac{p(f \mid e) p(e)}{p(f)}= \\
=\underset{e \in E}{\operatorname{argmax}} p(e) p(f \mid e)
\end{gathered}
$$

Why is it easier to deal with?

$$
e^{*}=\underset{\text { Language model }}{\operatorname{argmax}} \underbrace{p(e)}_{\text {Translation model }} \underbrace{p(f \mid e)}
$$

- $p(e)$ models the fluency of the translation
- $p(f \mid e)$ models the adequacy of the translation
- argmax is the search problem implemented by a decoder

Noisy Chanel

Noisy channel

Language model: $p(e)$

$$
p(\mathbf{e})=p\left(e_{1}\right) p\left(e_{2} \mid e_{1}\right) \ldots p\left(e_{k} \mid e_{1} \ldots e_{k-1}\right)
$$

N -gram models or neural networks:

Translation model: $\mathbf{p (f | e)}$

$$
p(f \mid e)=p\left(f_{1}, f_{2}, \ldots f_{J} \mid e_{1}, e_{2}, \ldots e_{I}\right)
$$

f (Foreign): Крику много, а шерсти мало.
e (English): Great cry and little wool.

Translation model: $\mathbf{p (f | e)}$

We could learn translation probabilities for separate words:

Translation model: $\mathbf{p}(\mathbf{f} \mid \mathrm{e})$

But how to build the probability for the whole sentences?

$$
p(f \mid e)=\begin{aligned}
& \text { Some Magic } \\
& \text { Factorization }
\end{aligned}\left[p\left(f_{j} \mid e_{i}\right)\right]
$$

Translation model: $\mathbf{p (f | e)}$

But how to build the probability for the whole sentences?

$$
p(f \mid e)=\underset{\text { Factorization }}{\substack{\text { Some Magic } \\ \text { Fact }}}\left[p\left(f_{j} \mid e_{i}\right)\right]
$$

Reorderings:

Крику много, а шерсти мало.

Great cry and little wool.

Word Alignments

One-to-many and many-to-one:

Anneтит приходит во время еды.

The appetite comes with eating.

Words can disappear or appear from nowhere:
У каждой пули свое назначение.

Every bullet has its billet.

Word Alignment Models

Word Alignments

"As English not all languages words in the same order put. Hmmmmmm.» - Yoda

Word alignment task

Given a corpus of (\mathbf{e}, f) sentence pairs:

- English, source: $e=\left(e_{1}, e_{2}, \ldots e_{I}\right)$
- Foreign, target: $f=\left(f_{1}, f_{2}, \ldots f_{J}\right)$

Predict:

- Alignments a between e and f:
e: The appetite comes with eating.

f: Аппетит приходит во время еды.

Word alignment matrix

Word alignment matrix

Each target word is allowed to have only one source!

Word alignment matrix

Each target word is allowed to have only one source!

Word alignment matrix

Each target word is allowed to have only one source!

Word alignment matrix

Each target word is allowed to have only one source!

Word alignment matrix

Each target word is allowed to have only one source!

Word alignment matrix

Each target word is allowed to have only one source!

Sketch of learning algorithm

1. Probabilistic model (generative story)

Given e, model the generation of f :

$$
p(f, a \mid e, \Theta)=?
$$

The most creative step:

- How do we parametrize the model?
- Is it too complicated or too unrealistic?

Sketch of learning algorithm

1. Probabilistic model (generative story)

Given e, model the generation of f :

$$
\begin{gathered}
p(f, a \mid e, \Theta)=? \\
\text { observable } \\
\text { variables }
\end{gathered}
$$

The most creative step:

- How do we parametrize the model?
- Is it too complicated or too unrealistic?

Sketch of learning algorithm

1. Probabilistic model (generative story)

Given e, model the generation of f :

$$
\underset{\text { hidden }}{\text { variables }} \underset{\text { observable }}{p(f, a \mid e, \Theta)=?}
$$

The most creative step:

- How do we parametrize the model?
- Is it too complicated or too unrealistic?

Sketch of learning algorithm

1. Probabilistic model (generative story)

Given e, model the generation of f :

The most creative step:

- How do we parametrize the model?
- Is it too complicated or too unrealistic?

Sketch of learning algorithm

2. Likelihood maximization for the incomplete data:

$$
p(f \mid e, \Theta)=\sum_{a} p(f, a \mid e, \Theta) \rightarrow \max _{\Theta}
$$

Sketch of learning algorithm

2. Likelihood maximization for the incomplete data:

$$
p(f \mid e, \Theta)=\sum_{a} p(f, a \mid e, \Theta) \rightarrow \max _{\Theta}
$$

3. EM-algorithm to the rescue!

Iterative process:

- E-step: estimates posterior probabilities for alignments
- M-step: updates Θ - parameters of the model

Generative story

$$
p(f, a \mid e)=p(J \mid e)
$$

1. Choose the length of the foreign sentence

Generative story

$$
p(f, a \mid e)=p(J \mid e) \prod_{j=1}^{J} p\left(a_{j} \mid a_{1}^{j-1}, f_{1}^{j-1}, J, e\right) \times
$$

1. Choose the length of the foreign sentence
2. Choose an alignment for each word (given lots of things)

Generative story

$$
\begin{aligned}
p(f, a \mid e)=p(J \mid e) \prod_{j=1}^{J} p(& \left.a_{j} \mid a_{1}^{j-1}, f_{1}^{j-1}, J, e\right) \times \\
& \times p\left(f_{j} \mid a_{j}, a_{1}^{j-1}, f_{1}^{j-1}, J, e\right)
\end{aligned}
$$

1. Choose the length of the foreign sentence
2. Choose an alignment for each word (given lots of things)
3. Choose the word (given lots of things)

IBM model 1

$$
p(f, a \mid e)=p(J \mid e) \prod_{j=1}^{J} p\left(a_{j}\right) p\left(f_{j} \mid a_{j}, e\right)
$$

+ The model is simple and has not too many parameters
- The alignment prior does not depend on word positions

Translation table

IBM model 2

$$
p(f, a \mid e)=p(J \mid e) \prod_{j=1}^{J} p\left(a_{j} \mid j, I, J\right) p\left(f_{j} \mid a_{j}, e\right)
$$

Position-based prior

$$
d\left(a_{j} \mid j, I, J\right)
$$

Translation table $t\left(f_{j} \mid e_{a_{j}}\right)$

+ The alignments depend on position-based prior
- Quite a lot of parameters for the alignments

Position-based prior

- For each pair of the lengths of the sentences:
- $I \times J$ matrix of probabilities

Re-parametrization, Dyer et. al 2013

- If we know, it's going to be diagonal - let's model it diagonal!
- Much less parameters, easier to train on small data

HMM for the prior

$$
p(f, a \mid e)=\prod_{j=1}^{J} p\left(a_{j} \mid a_{j-1}, I, J\right) p\left(f_{j} \mid a_{j}, e\right)
$$

Transition probabilities Translation table

$$
d\left(a_{j} \mid a_{j-1}, I, J\right) \quad t\left(f_{j} \mid e_{a_{j}}\right)
$$

e: All cats are grey in the dark.

f: В темноте все кошки серы.

Resume

- IBM models - first working systems of MT
- Lot's of problems with models 1 and 2:
- How to deal with spurious words
- How to control fertility
- Most importantly, how to do many-to-many alignments?
- Phrased-based machine translation (Koehn's book)

Encoder-decoder architecture

Sequence to sequence

Sequence to sequence

Ilya Sutskever, Oriol Vinyals, Quoc V. Le. Sequence to Sequence Learning with Neural Network, 2014.

Sequence to sequence

Sequence to sequence

Cho et. al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, 2014.

Sequence to sequence

$$
p\left(y_{1}, \ldots y_{J} \mid x_{1}, \ldots x_{I}\right)=\prod_{j=1}^{J} p\left(y_{j} \mid v, y_{1}, \ldots y_{j-1}\right)
$$

- Encoder: maps the source sequence to the hidden vector

$$
\mathrm{RNN}: h_{i}=f\left(h_{i-1}, x_{i}\right) \quad v=h_{I}
$$

- Decoder: performs language modeling given this vector $\mathrm{RNN}: \quad s_{j}=g\left(s_{j-1},\left[y_{j-1}, v\right]\right)$
- Prediction (the simplest way):
$p\left(y_{j} \mid v, y_{1}, \ldots y_{j-1}\right)=\operatorname{softmax}\left(U s_{j}+b\right)$

Hidden representations are good...

Ilya Sutskever, Oriol Vinyals, Quoc V. Le. Sequence to Sequence Learning with Neural Network, 2014.

... but still a bottleneck

Attention mechanism

Attention mechanism

Bahdanau et. al - Neural Machine Translation by jointly learning to align and translate, 2015.

Attention mechanism

- Encoder states are weighted to obtain the representation relevant to the decoder state:

$$
v_{j}=\sum_{i=1}^{I} \alpha_{i j} h_{i}
$$

- The weights are learnt and should find the most relevant encoder positions:

$$
\alpha_{i j}=\frac{\exp \left(\operatorname{sim}\left(h_{i}, s_{j-1}\right)\right)}{\sum_{i^{\prime}=1}^{I} \exp \left(\operatorname{sim}\left(h_{i^{\prime}}, s_{j-1}\right)\right)}
$$

How to compute attention weights?

- Additive attention:

$$
\operatorname{sim}\left(h_{i}, s_{j}\right)=w^{T} \tanh \left(W_{h} h_{i}+W_{s} s_{j}\right)
$$

- Multiplicative attention:

$$
\operatorname{sim}\left(h_{i}, s_{j}\right)=h_{i}^{T} W s_{j}
$$

- Dot product also works:

$$
\operatorname{sim}\left(h_{i}, s_{j}\right)=h_{i}^{T} s_{j}
$$

Put all together

$$
p\left(y_{1}, \ldots y_{J} \mid x_{1}, \ldots x_{I}\right)=\prod_{j=1}^{J} p\left(y_{j} \mid v_{j}, y_{1}, \ldots y_{j-1}\right)
$$

- Still encoder-decoder architecture with RNNs:

$$
h_{i}=f\left(h_{i-1}, x_{i}\right) \quad s_{j}=g\left(s_{j-1},\left[y_{j-1}, v_{j}\right]\right)
$$

- But the source representations differ for each position j of the decoder.

Helps for long sentences

NMT with attention

Bahdanau et. al. Neural Machine Translation by jointly learning to align and translate, 2015.

Example: attention (alignments)

Bahdanau et. al. Neural Machine Translation by jointly learning to align and translate, 2015.

Is the attention similar to what humans do?

- For humans: saves time

Attention saves time when reading (i.e. we look only to the relevant parts of the sentence).

- For machines: wastes time

To compute the attention weights, the model carefully
examines ALL the positions, thus wastes even more time.

Local attention

1. Find the most relevant position a_{j} in the source

- Monotonic alignments: $a_{j}=j$
- Predictive alignments: $\quad a_{j}=I \cdot \sigma\left(b^{T} \tanh \left(W s_{j}\right)\right)$

2. Attend only positions within a window $\left[\mathbf{a}_{\mathbf{j}}-\mathbf{h} ; \mathbf{a}_{\mathbf{j}}+\mathbf{h}\right]$

- Compute scores as usual
- Probably multiply by a Gaussian centered in a_{j}

Global vs local attention

System	Perplexity	BLEU
global (location)	6.4	19.3
global (dot)	6.1	20.5
global (mult)	6.1	19.5
local-m (dot)	>7.0	x
local-m (mult)	6.2	20.4
local-p (dot)	6.6	19.6
local-p (mult)	$\mathbf{5 . 9}$	$\mathbf{2 0 . 9}$

Luong et. al. Effective Approaches to Attention-based Neural Machine Translation, 2015.

Global vs local attention

System	Perplexity	BLEU	
$h_{i}^{T} s_{j} \rightarrow$	\rightarrow $h_{i}^{T} W s_{j}$$\rightarrow$global (location) global (dot) global (mult)	6.4	19.3
	6.1	20.5	
local-m (dot)	>7.0	19.5	
local-m (mult)	6.2	20.4	
local-p (dot)	6.6	19.6	
local-p (mult)	$\mathbf{5 . 9}$	$\mathbf{2 0 . 9}$	

Luong et. al. Effective Approaches to Attention-based Neural Machine Translation, 2015.

How to deal with a vocabulary?

Outline

- Computing softmax for a large vocabulary is slow!
- Hierarchical softmax
- Even a large vocabulary has OOV words:
- Copy mechanism
- Sub-word modeling
- Word-character hybrid models
- Byte-pair encoding

Outline

- Computing softmax for a large vocabulary is slow!
- Hierarchical softmax
- Even a large vocabulary has OOV words:
- Copy mechanism
- Sub-word modeling
- Word-character hybrid models
- Byte-pair encoding

Hierarchical softmax

Each word is uniquely represented by a binary code:

- 0 means "go left", 1 means "go right"

Hierarchical softmax

E.g. for zebra the code is $d=(0,1)$

Scaling softmax

Express the probability of a word (zebra) as a product of probabilities of the binary decisions along the path $\left(\begin{array}{ll}d_{s 1} & d 2\end{array}\right)$.

$$
p\left(w_{n}=w \mid w_{1}^{n-1}\right)=\prod_{i} p\left(d_{i} \mid w_{1}^{n-1}\right)
$$

Do you believe that it sums to 1 ?

Hierarchical softmax

Hierarchical softmax

Hierarchical softmax

$$
\begin{array}{r}
0.7 \cdot 0.8 \\
+\quad 0.7 \cdot 0.2 \\
+\quad 0.3 \cdot 0.4 \\
0.3 \cdot 0.6
\end{array}
$$

horse
000

Hierarchical softmax

$$
\begin{array}{r}
0.7 \cdot 0.8 \\
+\quad 0.7 \cdot 0.2 \\
+\quad 0.3 \cdot 0.4 \\
0.3 \cdot 0.6
\end{array}
$$

horse
000

Hierarchical softmax

$$
\begin{aligned}
& 0.7 \\
& +\quad 0.3 \cdot 0.4 \\
& +\quad 0.3 \cdot 0.6
\end{aligned}
$$

Hierarchical softmax

$$
\begin{aligned}
& 0.7 \\
& +\quad 0.3 \cdot 0.4 \\
& +\quad 0.3 \cdot 0.6
\end{aligned}
$$

Hierarchical softmax

$$
\begin{array}{r}
0.7 \\
+\quad 0.3
\end{array}
$$

Hierarchical softmax

$$
\begin{array}{r}
0.7 \\
+\quad 0.3
\end{array}
$$

Hierarchical softmax

1.0

Congratulations!

Hierarchical softmax

Model binary decisions along the path in the tree:

$$
p\left(w_{n}=w \mid w_{1}^{n-1}\right)=\prod_{i} p\left(d_{i} \mid w_{1}^{n-1}\right)
$$

How to construct a tree (balanced vs. semantic):

- Based on some pre-built ontology
- Based on semantic clustering from data
- Huffman tree
- Random

Outline

- Computing softmax for a large vocabulary is slow!
- Hierarchical softmax
- Even a large vocabulary has OOV words:
- Copy mechanism
- Sub-word modeling
- Word-character hybrid models
- Byte-pair encoding

Copy mechanism

- Scaling softmax is insufficient!
- What do we do with OOV words?
- Names, numbers, rare words...
The UNK portico in UNK

Copy mechanism

- Scaling softmax is insufficient!
- What do we do with OOV words?
- Names, numbers, rare words...

	ecotax		Pont-de-Buis
The	UNK	portico in UNK	
Le portique			
UNK de UNK			

Copy mechanism

- Scaling softmax is insufficient!
- What do we do with OOV words?
- Names, numbers, rare words...

Copy mechanism

- Scaling softmax is insufficient!
- What do we do with OOV words?
- Names, numbers, rare words...

Look-up in a dictionary

Copy mechanism

- Scaling softmax is insufficient!
- What do we do with OOV words?
- Names, numbers, rare words...

Look-up in a dictionary Copy name

Copy mechanism

Algorithm:

- Provide word alignments in train time
- Learn relative positions for UNK tokens with NMT
- Post-process the translation:
- Copy the source word
- Look up in a dictionary

Simple, but super useful technique!

Towards open vocabulary

Still problems:

- Transliteration: Christopher \mapsto Kryštof
- Multi-word alignment: Solar system \mapsto Sonnensystem
- Rich morphology: nejneobhospodařovávatelnějšímu
- Informal spelling: goooooood morning !!!!!

Outline

- Computing softmax for a large vocabulary is slow!
- Hierarchical softmax
- Even a large vocabulary has OOV words:
- Copy mechanism
- Sub-word modeling
- Word-character hybrid models
- Byte-pair encoding

Outline

- Computing softmax for a large vocabulary is slow!
- Hierarchical softmax
- Even a large vocabulary has OOV words:
- Copy mechanism
- Sub-word modeling
- Word-character hybrid models
- Byte-pair encoding

Character-based models

Character-based encoder is good for source languages with rich morphology!

- Bi-LSTMs to build word embeddings from characters
- CNNs on characters

Ling, et. al. Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation. EMNLP 2015.

Kim, et. al. Character-Aware Neural Language Models. AAAI 2016.

Marta R. Costa-jussà and José A. R. Fonollosa. Characterbased Neural Machine Translation. ACL 2016.

Hybrid models: the best of two worlds

- Work mostly on words level
- Go to characters when needed

Thang Luong and Chris Manning. Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models. ACL 2016.

Outline

- Computing softmax for a large vocabulary is slow!
- Hierarchical softmax
- Even a large vocabulary has OOV words:
- Copy mechanism
- Sub-word modeling
- Word-character hybrid models
- Byte-pair encoding

Byte-pair encoding

- Simple way to handle open vocabulary:
- Start with characters
- Iteratively replace the most frequent pair with one unit

Byte-pair encoding

- Simple way to handle open vocabulary:
- Start with characters
- Iteratively replace the most frequent pair with one unit

She sells seashells by the seashore

Byte-pair encoding

- Simple way to handle open vocabulary:
- Start with characters
- Iteratively replace the most frequent pair with one unit

She_sells_seashells_by_the_seashore_

Byte-pair encoding

- Simple way to handle open vocabulary:
- Start with characters
- Iteratively replace the most frequent pair with one unit

She_sells_seashells_by_the_seashore_

Byte-pair encoding

- Simple way to handle open vocabulary:
- Start with characters
- Iteratively replace the most frequent pair with one unit

She_sells_seashells_by_the_seashore

Byte-pair encoding

- Simple way to handle open vocabulary:
- Start with characters
- Iteratively replace the most frequent pair with one unit

She_sells_seashells_by_the_seashore

Byte-pair encoding

- Simple way to handle open vocabulary:
- Start with characters
- Iteratively replace the most frequent pair with one unit

She_sells _seashells_by_the _seashore

Byte-pair encoding

- Simple way to handle open vocabulary:
- Start with characters
- Iteratively replace the most frequent pair with one unit

She_sells _seashells_by_the _seashore

Byte-pair encoding

- Simple way to handle open vocabulary:
- Start with characters
- Iteratively replace the most frequent pair with one unit

She _ se lls _ seashells_by_the_seashore

Byte-pair encoding

- Simple way to handle open vocabulary:
- Start with characters
- Iteratively replace the most frequent pair with one unit

She _ sells _ seashells_by_the_seashore

Byte-pair encoding

- Simple way to handle open vocabulary:
- Start with characters
- Iteratively replace the most frequent pair with one unit

Sh e _ sell s _ sea shells _by the _ seashore

Byte-pair encoding

- Simple way to handle open vocabulary:
- Start with characters
- Iteratively replace the most frequent pair with one unit

Sh e _ sell s _ sea shells _by the _ seashore

- End whenever you reach the vocabulary size limit
- Stick to that vocabulary of sub-word units
- Apply the same algorithm to test sentences

Why is it so useful?

Denkowski, Neubig. Stronger Baselines for Trustable Results in Neural Machine Translation, 2017.

BLEU score comparison

	WMT			IWSLT	
	DE-EN	EN-FI	RO-EN	EN-FR	CS-EN
Words 50K	31.6	12.6	27.1	33.6	21.0
BPE 32K	$\mathbf{3 3 . 5}$	$\mathbf{1 4 . 7}$	$\mathbf{2 7 . 8}$	34.5	22.6
BPE 16K	33.1	$\mathbf{1 4 . 7}$	$\mathbf{2 7 . 8}$	$\mathbf{3 4 . 8}$	$\mathbf{2 3 . 0}$

- Byte-pair encoding improves BLEU score
- It is a nice and simple way to handle the vocabulary
- Very common trick in modern NMT

