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Latent variables ML

Suppose objects have observed features x and unobserved (latent)

features z1.

[x , z ] ∼ p(x , z , θ), x ∼ p(x , θ)

denote X = [x1, x2, ...xN ], Z = [z1, z2, ...zN ].

To �nd θ̂ we need to solve

L(θ) = ln p(X |θ) = ln
∑
Z

p(X ,Z |θ)→ max
θ

This is intractable for unknown Z .

We need to fallback to iterative optimization, such as SGD.

Alternatively, we may use EM algorithm, which �averages� over

di�erent �xed variants of Z .
1They are considered discrete here. Everything holds true for continious

latent variables if everywhere you replace summation over Z with integration
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General idea of EM algorithm

Initialize θ̂0 randomly, t = 0

Repeat until convergence:
1 gt(θ) is estimated as lower bound for ln p(X |θ), tight for θ̂t
2 θ̂t+1 = arg maxθ gt(θ)
3 t = t + 1
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Distribution of latent variables

Let's introduce q(Z ) - some distribution over latent variables Z ,
q(Z ) ≥ 0,

∑
Z q(Z ) = 1. Then

L(θ) = ln p(X |θ) = ln
∑
Z

p(X ,Z |θ)

= ln
∑
Z

q(Z )
p(X ,Z |θ)

q(Z )
(1)

≥
∑
Z

q(Z ) ln
p(X ,Z |θ)

q(Z )
= g(θ) (2)

On the last step we used Jensen's inequality ln (Eun) ≥ E (lnun)
applied to

1 ln x which is strictly concave, because (ln x)′′ = − 1

x2
< 0

2 for r.v. U ∈ R with distribution p
(
U = p(X ,Z ,θ)

q(Z)

)
= q(Z ) for

di�erent Z .
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Making lower bound tight

We can select q(Z ) so that at �xed θ L(θ) = g(θ):

Since ln x is strictly concave, equality in inequality (1)-(2) is

achieved <=> U = EU with probability 1.

This happens when p(X ,Z |θ)
q(Z) = c for some constant c ∀Z .

Using property
∑

Z q(Z ) = 1 we have

c
∑
Z

q(Z ) = c =
∑
Z

p(X ,Z |θ) = p(X |θ)

So for lower bound g(θ) to be tight at θ, we need to take

q(Z ) =
p(X ,Z |θ)
p(X |θ)

= p(Z |X , θ)
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Equivalent M-step

M-step can be equivalently represented as

θ̂t+1 = argmax
θ
{
∑
Z

q(Z ) ln
p(X ,Z |θ)

q(Z )
}

= argmax
θ
{
∑
Z

q(Z ) ln p(X ,Z |θ)−

const(θ)︷ ︸︸ ︷∑
Z

q(Z ) ln q(Z )}

= argmax
θ
{
∑
Z

q(Z ) ln p(X ,Z |θ)}

= argmax
θ
{
∑
Z

p(Z |X , θ̂t) ln p(X ,Z |θ)}

= arg max
θ
{EZ{ln p(X ,Z |θ)}, Z ∼ q(Z ) = p(Z |X , θ̂t)
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EM algorithm

INPUT:
training set X = [x1, ...xN ], convergence criteria

ALGORITHM:
t = 0, θ0 - init randomly

repeat until convergence:
E-step: set distribution over latent variables:

q(Z) = p(Z |X , θ̂t)
M-step: improve estimate of θ:

θ̂t+1 = argmaxθ{
∑

Z q(Z) ln p(X ,Z |θ)}
t = t + 1

OUTPUT:

ML estimate θ̂t+1 for the training set.
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Comments

Theorem 1

EM estimates of θ on each iteration θ̂1, θ̂2, θ̂3, ... lead to

non-decreasing sequence of likelihoods L(θ̂1) ≥ L(θ̂2) ≥ L(θ̂3) ≥ ...

Proof. 1 Suppose that at iteration t we have L(θ̂t).
2 At the E-step among all lower bounds g(θ) ≤ L(θ)∀θ we

select such lower bound gt(·), that L(θ̂t) = gt(θ̂t) (by
selecting qn(Z )).

3 On M-step we �nd θ̂t+1 = arg maxθ gt(θ), so
gt(θ̂t+1) ≥ gt(θ̂t)

4 Since gt(·) is lower bound, we have

L(θ̂t+1) ≥ gt(θ̂t+1) ≥ gt(θ̂t) = L(θ̂t)

Since L(θ̂t) is non-decreasing and is bounded from above

(L(θ) ≤
∑N

n=1
ln 1 = 0) it converges.
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Comments on EM algorithm

On M-step q(Z ) does not depend on θ, since this parameter

was taken �xed from E-step.

Possible convergence criteria:∥∥∥θ̂t+1 − θ̂t
∥∥∥ < ε

L(θ̂t+1)− L(θ̂t) < ε
maximum number of iterations reached

EM converges to local optimum
to improve quality it is good to

re-run algorithm from di�erent initial conditions

select estimate that gives the greatest likelihood

To guarantee convergence it is not required to solve

θ̂t+1 = arg maxθ gt(θ) precisely.

we can make very coarse (e.g. single step) optimization here
this is called GEM algorithm (generalized EM)
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Comments on EM algorithm

EM can also be applied for MAP optimization

De�ne J(Q, θ) =
∑

Z q(Z ) ln p(X ,Z |θ)
q(Z) .

We know that L(θ) ≥ J(Q, θ) for all Q = Q(Z ).

EM algorithm can be viewed as coordinate ascent:

E-step maximizes J(Q, θ) w.r.t. Q2

M-step maximizes J(Q, θ) w.r.t. θ

2We know that, because we chose such Q that ensure equality in Jensen's

inequality.
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Independent observations

Table of Contents

1 Independent observations

2 EM with regularization
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Independent observations

Independent observations

Consider special case, when (xn, zn) are i.i.d.3

Examples:.

zn is unknown mixture component, generating xn
zn are missing variables in i.i.d. xn

E-step becomes:

q(Z ) = p(Z |X , θ) = p(z1|x1, θ)...p(zN |xN , θ) = q1(z1)...qN(zN)

for

qn(zn) = p(zn|xn, θ)

3i.i.d.=independent and identically distributed.
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Independent observations

Independent observations

M-step becomes:

θ̂ = argmax
θ
{
∑
Z

q(Z ) ln p(X ,Z |θ)}

= argmax
θ
{
∑
Z

q(Z )
N∑

n=1

ln p(xn, zn|θ)}

= argmax
θ
{

N∑
n=1

∑
z1,...zN

q(z1, ...zN) ln p(xn, zn|θ)}

= argmax
θ
{

N∑
n=1

∑
z1,...zN

q1(z1)...qN(zN) ln p(xn, zn|θ)}

= argmax
θ
{

N∑
n=1

∑
zn

qn(zn) ln p(xn, zn|θ)}
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EM with regularization
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EM with regularization

Distribution of latent variables

Suppose we add regularization R(θ) to log-likelihood.

L(θ) = ln p(X |θ) + R(θ) = ln
∑
Z

p(X ,Z |θ) + λR(θ)

= ln
∑
Z

q(Z )
p(X ,Z |θ)

q(Z )
+ λR(θ) (Yensen's inequality) (3)

≥
∑
Z

q(Z ) ln
p(X ,Z |θ)

q(Z )
+ λR(θ) (4)

=
∑
Z

q(Z ) ln p(X ,Z |θ) + λR(θ)−
∑
Z

q(Z ) ln q(Z ) = g(θ)

(5)

Since
∑

Z q(Z ) ln q(Z ) = const(θ),

θ̂ = arg max
θ

g(θ) = arg max
θ

{∑
Z

q(Z ) ln p(X ,Z |θ) + λR(θ)

}
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EM with regularization

Making lower bound tight

We can select q(Z ) so that at �xed θ L(θ) = g(θ):

Since ln x is strictly concave, equality in inequality (3)-(4) is

achieved <=> U = EU with probability 1.

This happens when p(X ,Z |θ)
q(Z) = c for some constant c ∀Z .

Using property
∑

Z q(Z ) = 1 we have

c
∑
Z

q(Z ) = c =
∑
Z

p(X ,Z |θ) = p(X |θ)

So for lower bound g(θ) to be tight at θ, we need to take

q(Z ) =
p(X ,Z |θ)
p(X |θ)

= p(Z |X , θ)
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EM with regularization

EM algorithm

INPUT:
training set X = [x1, ...xN ], convergence criteria, λ, R(θ)

ALGORITHM:

t = 0, θ̂0 - init randomly

repeat until convergence:
E-step: set distribution over latent variables:

q(Z) = p(Z |X , θ̂t)
M-step: improve estimate of θ

θ̂t+1 = argmaxθ{
∑

Z q(Z) ln p(X ,Z |θ) + λR(θ)}
t = t + 1

OUTPUT:

ML estimates θ̂t+1 for the training set.
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EM with regularization

EM algorithm for MAP estimate

MAP (maximum a posteriori) estimate:
θ is a random variable with prior p(θ)

θ̂ = arg maxθ ln p(X , θ) = arg maxθ ln p(X |θ) + ln p(θ)
this is equivalent to adding regularization λR(θ) = ln p(θ)

INPUT:
training set X = [x1, ...xN ], convergence criteria, prior p(θ)

ALGORITHM:

t = 0, θ̂0 - init randomly

repeat until convergence:
E-step: set distribution over latent variables:

q(Z) = p(Z |X , θ̂t)
M-step: improve estimate of θ

θ̂t+1 = argmaxθ{
∑

Z q(Z) ln p(X ,Z |θ) + ln p(θ)}
t = t + 1
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