EM algorithm

Victor Kitov

Latent variables ML

Suppose objects have observed features x and unobserved (latent) features z^1 .

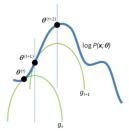
• $[x, z] \sim p(x, z, \theta), x \sim p(x, \theta)$ • denote $X = [x_1, x_2, ... x_N], Z = [z_1, z_2, ... z_N].$ To find $\hat{\theta}$ we need to solve

$$L(heta) = \ln p(X| heta) = \ln \sum_{Z} p(X, Z| heta)
ightarrow \max_{ heta}$$

- This is intractable for unknown Z.
- We need to fallback to iterative optimization, such as SGD.
- Alternatively, we may use EM algorithm, which "averages" over different fixed variants of Z.

¹They are considered discrete here. Everything holds true for continious latent variables if everywhere you replace summation over Z with integration

General idea of EM algorithm



- Initialize $\widehat{ heta}_0$ randomly, t=0
- Repeat until convergence:

g_t(θ) is estimated as lower bound for ln p(X|θ), tight for θ_t
 θ_{t+1} = arg max_θ g_t(θ)
 t = t + 1

L

Distribution of latent variables

Let's introduce q(Z) - some distribution over latent variables Z, $q(Z) \geq 0, \sum_Z q(Z) = 1$. Then

$$(\theta) = \ln p(X|\theta) = \ln \sum_{Z} p(X, Z|\theta)$$
$$= \ln \sum_{Z} q(Z) \frac{p(X, Z|\theta)}{q(Z)}$$
(1)
$$\geq \sum_{Z} q(Z) \ln \frac{p(X, Z|\theta)}{q(Z)} = g(\theta)$$
(2)

On the last step we used Jensen's inequality $\ln (\mathbb{E}u_n) \ge \mathbb{E}(\ln u_n)$ applied to

- 1 In x which is strictly concave, because $(\ln x)'' = -\frac{1}{x^2} < 0$
- Go for r.v. U ∈ ℝ with distribution $p\left(U = \frac{p(X,Z,\theta)}{q(Z)}\right) = q(Z)$ for different Z.

Making lower bound tight

We can select q(Z) so that at fixed $\theta L(\theta) = g(\theta)$:

- Since ln x is strictly concave, equality in inequality (1)-(2) is achieved <=> U = EU with probability 1.
- This happens when $\frac{p(X,Z|\theta)}{q(Z)} = c$ for some constant $c \ \forall Z$.

• Using property
$$\sum_Z q(Z) = 1$$
 we have

$$c\sum_{Z}q(Z)=c=\sum_{Z}p(X,Z|\theta)=p(X|\theta)$$

• So for lower bound g(heta) to be tight at heta, we need to take

$$q(Z) = \frac{p(X, Z|\theta)}{p(X|\theta)} = p(Z|X, \theta)$$

Equivalent M-step

M-step can be equivalently represented as

$$\begin{split} \hat{\theta}_{t+1} &= \arg\max_{\theta} \{\sum_{Z} q(Z) \ln \frac{p(X, Z|\theta)}{q(Z)} \} \\ &= \arg\max_{\theta} \{\sum_{Z} q(Z) \ln p(X, Z|\theta) - \overbrace{\sum_{Z} q(Z) \ln q(Z)}^{const(\theta)} \} \\ &= \arg\max_{\theta} \{\sum_{Z} q(Z) \ln p(X, Z|\theta) \} \\ &= \arg\max_{\theta} \{\sum_{Z} p(Z|X, \widehat{\theta}_t) \ln p(X, Z|\theta) \} \\ &= \arg\max_{\theta} \{\mathbb{E}_{Z} \{\ln p(X, Z|\theta) \}, \quad Z \sim q(Z) = p(Z|X, \widehat{\theta}_t) \end{split}$$

EM algorithm

INPUT:

```
training set X = [x_1, ... x_N], convergence criteria
```

ALGORITHM:

t=0, $heta_0$ - init randomly

repeat until convergence:

E-step: set distribution over latent variables: $q(Z) = p(Z|X, \hat{\theta}_t)$ M-step: improve estimate of θ : $\hat{\theta}_{t+1} = \arg \max_{\theta} \{ \sum_Z q(Z) \ln p(X, Z|\theta) \}$ t = t + 1

OUTPUT:

ML estimate $\hat{\theta}_{t+1}$ for the training set.

Comments

Theorem 1

EM estimates of θ on each iteration $\widehat{\theta}_1, \widehat{\theta}_2, \widehat{\theta}_3, ...$ lead to non-decreasing sequence of likelihoods $L(\widehat{\theta}_1) \ge L(\widehat{\theta}_2) \ge L(\widehat{\theta}_3) \ge ...$

Proof. **O** Suppose that at iteration t we have $L(\hat{\theta}_t)$.

At the E-step among all lower bounds g(θ) ≤ L(θ) ∀θ we select such lower bound g_t(·), that L(θ_t) = g_t(θ_t) (by selecting q_n(Z)).

3 On M-step we find
$$\widehat{\theta}_{t+1} = \arg \max_{\theta} g_t(\theta)$$
, so $g_t(\widehat{\theta}_{t+1}) \ge g_t(\widehat{\theta}_t)$

Since $g_t(\cdot)$ is lower bound, we have $L(\widehat{\theta}_{t+1}) \ge g_t(\widehat{\theta}_{t+1}) \ge g_t(\widehat{\theta}_t) = L(\widehat{\theta}_t)$

Since $L(\hat{\theta}_t)$ is non-decreasing and is bounded from above $(L(\theta) \leq \sum_{n=1}^{N} \ln 1 = 0)$ it converges.

Comments on EM algorithm

- On M-step q(Z) does not depend on θ, since this parameter was taken fixed from E-step.
- Possible convergence criteria:

•
$$\left\|\widehat{\theta}_{t+1} - \widehat{\theta}_t\right\| < \varepsilon$$

•
$$\widehat{L}(\widehat{\theta}_{t+1}) - \widehat{L}(\widehat{\theta}_t) < \varepsilon$$

- maximum number of iterations reached
- EM converges to local optimum
 - to improve quality it is good to
 - re-run algorithm from different initial conditions
 - select estimate that gives the greatest likelihood
- To guarantee convergence it is not required to solve $\hat{\theta}_{t+1} = \arg \max_{\theta} g_t(\theta)$ precisely.
 - we can make very coarse (e.g. single step) optimization here
 - this is called GEM algorithm (generalized EM)

Comments on EM algorithm

- EM can also be applied for MAP optimization
- Define $J(Q, \theta) = \sum_{Z} q(Z) \ln \frac{p(X, Z|\theta)}{q(Z)}$.
- We know that $L(\theta) \ge J(Q, \theta)$ for all Q = Q(Z).
- EM algorithm can be viewed as coordinate ascent:
 - E-step maximizes $J(Q, \theta)$ w.r.t. Q^2
 - M-step maximizes $J(Q, \theta)$ w.r.t. θ

 $^{^{2}}$ We know that, because we chose such Q that ensure equality in Jensen's inequality.

EM algorithm - Victor Kitov

Independent observations

Table of Contents

2 EM with regularization

Independent observations

Independent observations

- Consider special case, when (x_n, z_n) are i.i.d.³
 - Examples:
 - z_n is unknown mixture component, generating x_n
 - z_n are missing variables in i.i.d. x_n
- E-step becomes:

$$q(Z) = p(Z|X, \theta) = p(z_1|x_1, \theta)...p(z_N|x_N, \theta) = q_1(z_1)...q_N(z_N)$$

for

$$q_n(z_n) = p(z_n|x_n,\theta)$$

³i.i.d.=independent and identically distributed.

EM algorithm - Victor Kitov

Independent observations

Independent observations

• M-step becomes:

$$\hat{\theta} = \arg \max_{\theta} \{ \sum_{Z} q(Z) \ln p(X, Z|\theta) \}$$

$$= \arg \max_{\theta} \{ \sum_{Z} q(Z) \sum_{n=1}^{N} \ln p(x_n, z_n|\theta) \}$$

$$= \arg \max_{\theta} \{ \sum_{n=1}^{N} \sum_{z_1, \dots, z_N} q(z_1, \dots, z_N) \ln p(x_n, z_n|\theta) \}$$

$$= \arg \max_{\theta} \{ \sum_{n=1}^{N} \sum_{z_1, \dots, z_N} q_1(z_1) \dots q_N(z_N) \ln p(x_n, z_n|\theta) \}$$

$$= \arg \max_{\theta} \{ \sum_{n=1}^{N} \sum_{z_n} q_n(z_n) \ln p(x_n, z_n|\theta) \}$$

EM algorithm - Victor Kitov

EM with regularization

Table of Contents

Distribution of latent variables

Suppose we add regularization $R(\theta)$ to log-likelihood.

$$L(\theta) = \ln p(X|\theta) + R(\theta) = \ln \sum_{Z} p(X, Z|\theta) + \lambda R(\theta)$$

= $\ln \sum_{Z} q(Z) \frac{p(X, Z|\theta)}{q(Z)} + \lambda R(\theta)$ (Yensen's inequality) (3)
 $\geq \sum_{Z} q(Z) \ln \frac{p(X, Z|\theta)}{q(Z)} + \lambda R(\theta)$ (4)
= $\sum_{Z} q(Z) \ln p(X, Z|\theta) + \lambda R(\theta) - \sum_{Z} q(Z) \ln q(Z) = g(\theta)$ (5)

Since
$$\sum_{Z} q(Z) \ln q(Z) = const(\theta)$$
,
 $\widehat{\theta} = \arg \max_{\theta} g(\theta) = \arg \max_{\theta} \left\{ \sum_{\substack{X \in \overline{A} \\ Y \in \overline{A}}} q(Z) \ln p(X, Z|\theta) + \lambda R(\theta) \right\}$

Making lower bound tight

We can select q(Z) so that at fixed $\theta L(\theta) = g(\theta)$:

- Since ln x is strictly concave, equality in inequality (3)-(4) is achieved <=> U = EU with probability 1.
- This happens when $\frac{p(X,Z|\theta)}{q(Z)} = c$ for some constant $c \ \forall Z$.
- Using property $\sum_Z q(Z) = 1$ we have

$$c\sum_{Z}q(Z)=c=\sum_{Z}p(X,Z|\theta)=p(X|\theta)$$

• So for lower bound g(heta) to be tight at heta, we need to take

$$q(Z) = \frac{p(X, Z|\theta)}{p(X|\theta)} = p(Z|X, \theta)$$

EM with regularization

EM algorithm

INPUT:

training set $X = [x_1, ... x_N]$, convergence criteria, λ , $R(\theta)$

ALGORITHM:

t=0, $\hat{ heta}_0$ - init randomly

repeat until convergence:

E-step: set distribution over latent variables:

$$\begin{split} q(Z) &= p(Z|X, \hat{\theta}_t) \\ \text{M-step: improve estimate of } \theta \\ \hat{\theta}_{t+1} &= \arg \max_{\theta} \{ \sum_Z q(Z) \mid n \, p(X, Z|\theta) + \lambda R(\theta) \} \\ t &= t+1 \end{split}$$

OUTPUT :

ML estimates $\hat{\theta}_{t+1}$ for the training set.

EM with regularization

EM algorithm for MAP estimate

- MAP (maximum a posteriori) estimate:
 - heta is a random variable with prior p(heta)
 - $\widehat{\theta} = \arg \max_{\theta} \ln p(X, \theta) = \arg \max_{\theta} \ln p(X|\theta) + \ln p(\theta)$
 - this is equivalent to adding regularization $\lambda R(\theta) = \ln p(\theta)$

INPUT:

training set $X = [x_1, ... x_N]$, convergence criteria, prior $p(\theta)$

ALGORITHM:

t= 0, $\hat{ heta}_{0}$ - init randomly

repeat until convergence: E-step: set distribution over latent variables: $q(Z) = p(Z|X, \hat{\theta}_t)$ M-step: improve estimate of θ $\hat{\theta}_{t+1} = \arg \max_{\theta} \{\sum_Z q(Z) \ln p(X, Z|\theta) + \ln p(\theta)\}$ t = t + 1