


Purpose

The aim of the study is to suggest a method to forecast a structure
of a regression model superposition, which approximates a data set
in terms of some quality function.

The problem

Algorithms of model selection are computationally complex due to
the large number of models.

Solution

We suggest to build an algorithm of forecasting a model structure
based on previously selected models.
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Creation of a volatility smile model

Options are financial instruments that convey the right, but not the
obligation, to engage in a future transaction on some underlying
security.

Ct = F (σ,S , r ,K , t),

Ct — option price,
σ — volatility,
S — underlying price,
r — risk-free rate,
K — strike price,
t — time to expiration.
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Historical price of an underlying security
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t is the time to expiration,
S is the underlying price.
Horizontal lines correspond to different strike prices K .
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Historical prices of the options
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t is the time to expiration,
C is the call option historical price.
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Non-linear regression problem

1 The regression data is a set

{(xn,σn)}Nn=1, where xn = (tn,Kn).

2 A set of the primitive functions is given G = {g1, ..., gv}.
3 Superpositions of primitives g define parametric regression

models
f = f (w, x), f ∈ F .

4 The problem is to select a model f that minimises SSE

ED =
N
∑

n=1

(f (w, xn)− yn)
2.
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The implied volatility computation

The implied volatility of an option is the argument minimum of the
difference between historical price of the option and its fair price.

σimp = argmin
σ

(Chist − C (σ,S , r ,K , t)).

• σimp is the dependent variable,

• K and t are the independent variables in the regression model.
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The regression data

t is the time to expiration,
K is the strike price and z-axis σimp is implied volatility.
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The volatility regression models

The model is given by experts of the Russian Trade System

σ = σ(w) = w1 + w2(1− exp(−w3x
2)) +

w4 arctan(w5x)

w5
,

where x =
log(K )− log(C (t))√

t
.

Volatility surface modeling rules of thumb [Duglish, 2006]

• The volatility depends only on the moneyness

dσ

dP
=

∂σ

∂C (P)

dC (P)

dP
.

• The volatility depends on the time as an inverse square

σ = Φ

(

ln(K/F )√
t

)

.
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Historical data

• We use a data set of the quarterly options for SPX for the
beginning of 2008.

• The initial model is given by the RTS experts:

σ = σ(w) = w1 + w2(1− exp(−w3x
2)) +

w4 arctan(w5x)

w5
,

where x = lnK−lnC(t)√
t

.
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Experiment summary: the selected model

σ = (w1K + w2)N ( lnK√
t
,w3) + w5 arctan

lnK−w6K
2−w7K−w8√
t
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Experiment summary: results for SPX options

During the computational experiment:

• 10 runs of the algorithm were made,

• more than 22000 models generated.

The 20 best models satisfy the expert requirements:

• inverse-square dependence on time to expiration,

• Most part has polynomial and exponent dependence on strike,

• mean error is 1.18%, max error is 15.1%.

So the models are interpretable and adequate as well.
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Primitive functions

Function Description Parametres
g(w, x1, x2)

plus2 y = x1 + x2 –
times2 y = x1x2 –
frac2 y = x1/x2 –

g(w, x)
inv y = 1/x –
add y = x + a a

normalpdf y = λ√
2πσ

exp
(

− (x−ξ)2

2σ2

)

+ a λ,σ, ξ, a

linear y = ax + b a, b
parabolic y = ax2 + bx + c a, b, c
sqrt y =

√
x –

arctan y = arctan(ax) a
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The model generation algorithm

The model generation algorithm contains three main steps.
Iterations begin:

1. Optimize parameters of every model from the competitive
set f1, . . . , fM :

wMP = argmin
w

ED(w|D, fi ).
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Element exchange

2. Make the element exchange:
1 select a pair of indexes i , j ∈ {1, . . . ,M} randomly,
2 select the elements gik and gjl in the models fi and fj ,
3 new models f ′i и f ′j are created by this exchange
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Element modification

3. Make the modification of the generated models {f ′i }.
1 select an element gik from the set of the elements of f ′i

randomly,
2 select an element gs from the elements of G ,
3 change gik to gs , if the numbers of arguments coincide.
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Model structure
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The problem of structure learning

Let us consider

• a set D = {(Dk , fk)};
• Dk = ( X

m×n
, y
m×1

);

• fk ∈ F is a model that approximates Dk ;

• G is a set of primitive functions;

• F is a set of superpositions of primitive functions g ∈ G:

F = {fs | fs : (ŵk ,X) $→ y, s ∈ N}.

One must

to find an algorithm a : Dk $→ fs .
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The problem of structure learning

For a set of superpositions F we need to find an index ŝ, such that
the function fŝ will bring the minimal value of the error function S

among all f ∈ F :

ŝ = arg min
s∈{1,...,|F|}

S(fs | ŵk ,Dk),

where ŵk is a vector of optimal parameters of the model fs for each
f ∈ F given D:

ŵk = arg min
w∈Ws

S(w | fs ,Dk).
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The rules of constructing a tree Γf for a superposition f

f = sin(x) + (ln x)x ;

The tree Γf
1 The root is denoted ∗;
2 Vi $→ gr ;

3 val(Vj) = v(gr(i));

4 dom(gr(i)) ⊃ cod(gr(j));

5 the arguments gr are
ordered;

6 xi are the leaves of Γf .
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The rules of constructing a tree Γf for a superposition f

1 We denote the root of the tree Γf by a special symbol “ * ”.
The has only one child node;

2 each non-root node Vi of the tree Γf has a corresponding
elementary functions from the set G;

3 the number of children nodes Vj of some node Vi is equal to
the number of arguments of a corresponding function gr :
v = v(gr );

4 the domain of a function corresponding to the node Vj

contains the codomain of a function of it’s parent node Vi :
dom(gr(i)) ⊃ cod(gr(j));

5 the order of the children nodes of a node Vi relates to the
order of the arguments of the corresponding function
gr , r = r(i);

6 the leaves of the tree Γf relate to the free variables xi .
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A restriction on constructing Γf

f = sin(x) + (ln x)x

The matrix Zf of links the tree Γf

sum times ln sin x

∗ 1 0 0 0 0

sum 0 1 1 0 0

times 0 0 0 1 1

ln 0 0 0 0 1

sin 0 0 0 0 1

The matrix Pf of link probabilities of the tree Γf

sum times ln sin x

∗ 0.7 0.1 0.1 0.1 0.2

sum 0.2 0.7 0.8 0.1 0.2

times 0.1 0.3 0 0.8 0.8

ln 0.2 0.1 0.3 0.1 0.9

sin 0.1 0.2 0.1 0 0.8
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Algorithms of forecasting the structure of superposition

a : Dk $→ fs .

The goal is:

to find a matrix Ps of link probabilities;
to find Zfs = arg max

Z∈M

∑

i ,j Pij × Zi ,j ,

where M is a set of matrices, each one encoding a superposition
from F .
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The procedure of constricting the tree Γ̂f

Let K be the maximal acceptable complexity value.

• Claim the node i of the tree open: i = 1.

• While the number of ones in the matrix does not exceed K
repeat:

1 chose cj = max
j=1,...,l

Pij for all open nodes i ;

2 overbuild the matrix Zf : j
∗ = argmax

j
cj , Zf (i , j∗) = 1;

3 add the node j∗ to the list of open nodes if (i , j∗) ∈ P ′;

• if the number of ones is larger than K , associate open nodes
to free variables: k∗ = argmax

k
P ′′
ik , (i , k∗) = 1 for all open

nodes i .
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Computational experiment

The aim of the experiment

Is to verify the suggested procedure of forecasting a superposition.

The data set D = {(Ds , fs)} and the algorithm a:D $→ Γ̂ are given.
The Leave-One-Out procedure is executed in the following way:

1 The parameters a are optimized on the basis of a learning
sample D \ {Dk}.

2 The tree Γ̂k = a(Dk) is constructed.

3 Based on Γ̂k a model f̂s is designed.

4 The parameters ŵk of the model f̂s are optimized.

5 The error function value S(ŵk , f̂s , fs) = ∥ y − f (wk ,X) ∥2 is
computed.
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Statistical hypothesis (or generating a synthetic data set)

1 Fixate the the model fs from a set F and the parameters
ws ∈ Ws ;

2 initialize the matrix X;

3 compute f (ws ,X);

4 fixate τf , |τf | < ϵ;

5 compute y = f (ws ,X) + τf ;

6 repeat r times for each model f ∈ F

Thus we obtain a data set: pairs of the sets D = ( X
m×n

, y
m×1

) with

the corresponding models f .
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The data set
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The original and the forecasted superposition
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f = w1 cos(α1x + α2) + w2x + w3 ln(α3x + α4).
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The obtained matrices of probabilities Pf
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The constructed trees Γf
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The dependance of the error function on the noise level and on the
model parameters
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Conclusion

• A problem of forecasting the structure of superposition was
stated and solved.

• We suggest a description of allowable superpositions that
satisfies the necessary restrictions.

• We propose an algorithm that constructs an allowable
superposition using a matrix of probabilities of forecast.

• We have designed an algorithm of forecasting the structure of
a regression model. Implemented on synthetic data, the
algorithm performs adequately.
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