
Chapter 7
Semantic Texton Forests

Matthew Johnson and Jamie Shotton

Abstract. The semantic texton forest is an efficient and powerful low-level feature
which can be effectively employed in the semantic segmentation of images. As
ensembles of decision trees that act directly on image pixels, semantic texton forests
do not need the expensive computation of filter-bank responses or local descriptors.
They are extremely fast to both train and test, especially compared with k-means
clustering and nearest-neighbor assignment of feature descriptors. The nodes in the
trees provide (i) an implicit hierarchical clustering into semantic textons, and (ii)
an explicit local classification estimate. The bag of semantic textons combines a
histogram of semantic textons over an image region with a region prior category
distribution. The bag of semantic textons can be used by an SVM classifier to infer
an image-level prior over categories, allowing the segmentation to emphasize those
categories that the SVM believes to be present. We will examine the segmentation
performance of semantic texton forests on two datasets including the VOC 2007
segmentation challenge.

7.1 Introduction

In this chapter we examine semantic texton forests, and evaluate their use for image
categorization and semantic segmentation. Semantic texton forests (STFs) demon-
strate that one can build powerful texton codebooks without computing expen-
sive filter-banks or descriptors, and without performing costly k-means clustering
and nearest-neighbor assignment. They are randomized decision forests that use
only simple pixel comparisons on local image patches, performing both an implicit

Matthew Johnson
Nokia, San Francisco, USA
e-mail: matthew.3.johnson@nokia.com

Jamie Shotton
Microsoft Research, Cambridge, UK
e-mail: jamiesho@microsoft.com

R. Cipolla, S. Battiato, & G.M. Farinella (Eds.): Computer Vision, SCI 285, pp. 173–203.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

matthew.3.johnson@nokia.com
jamiesho@microsoft.com

174 M. Johnson and J. Shotton

hierarchical clustering into semantic textons and an explicit local classification of
the patch category. STFs provide advantages over other algorithms in both quantita-
tive performance and execution speed.

We will look at two applications of STFs: image categorization (inferring the ob-
ject categories present in an image) and semantic segmentation (dividing the image
into coherent regions and simultaneously categorizing each region). The tool that
will be used for both of these is the bag of semantic textons. This is computed over
a given image region, and extends the bag of words model [6] by combining a hi-
erarchical histogram of the semantic textons with a prior category distribution. By
considering the image as a whole, a highly discriminative descriptor for categoriza-
tion can be obtained. For segmentation, a bag of semantic textons can be computed
for many local rectangular regions and then a second randomized decision forest
can be built which achieves efficient and accurate segmentation by drawing on ap-
pearance and semantic context.

The segmentation algorithm depends on image information that even with semi-
local context can often be ambiguous. The global statistics of the image, however,
can be more discriminative and may be sufficient to accurately estimate the image
categorization. It is therefore useful to use categorization as an image-level prior to
improve segmentation by emphasizing the categories most likely to be present.

7.2 Related Work

Textons [17, 35] and visual words [32] have proven powerful discrete image repre-
sentations for categorization and segmentation [6,30,39,40]. We will treat the terms
texton and visual word synonymously. Filter-bank responses (derivatives of Gaus-
sians, wavelets, etc.) or invariant descriptors (e.g., SIFT [16]) are computed across
a training set, either at sparse interest points [19] or more densely; recent results
in [22] suggest that densely sampling visual words improves categorization perfor-
mance. The collection of descriptors are then clustered to produce a codebook of
visual words, typically with the simple but effective k-means, followed by nearest-
neighbor assignment. Unfortunately, this three-stage process is extremely slow and
often the most time consuming part of the whole algorithm, even with optimizations
such as k-d trees, the triangle inequality [7], or hierarchical clusters [21, 29].

The recent work of Moosmann et al [20] proposed a more efficient alternative, in
which training examples are recursively divided using a randomized decision forest
[1, 10] and where the splits in the decision trees are comparisons of a descriptor
dimension to a threshold. Semantic texton forests extend [20] in three ways: (i) the
model is learned directly from the image pixels, bypassing the expensive step of
computing image descriptors; (ii) while [20] use the learned decision forest only
for clustering, here it is used as a classifier, which enables the algorithm to use
semantic context for image segmentation; and (iii) in addition to the leaf nodes
used in [20], split nodes as hierarchical clusters are included. A related method,
the pyramid match kernel [11], exploits a hierarchy in descriptor space, though it

7 Semantic Texton Forests 175

requires the computation of feature descriptors and is only applicable to kernel based
classifiers.

The pixel-based features used are similar to those in [15], but the forests are
trained to recognize object categories, not match particular feature points.

Other work has also looked at alternatives to k-means. Recent work [34] quan-
tizes feature space into a hyper-grid, but requires descriptor computation and can
result in very large visual word codebooks. Winder & Brown [38] learned the pa-
rameters of generic image descriptors for 3D matching , though did not address vi-
sual word clustering. Jurie & Triggs [13] proposed building codebooks using mean
shift, but did not incorporate semantic information in the codebook generation.

7.3 Randomized Decision Forests

The randomized decision forest is a fast and accurate classifier [1, 10] that is an
ensemble of decision trees. Decision trees are a construct used extensively in data
mining [5] and machine learning [4], and consist of a hierarchy of questions, as
illustrated in Figure 7.1. A tree is traversed, starting at the root, by repeatedly asking
questions and branching to the relevant child node until a leaf node is reached. At
the leaf, the stored decision is output. In this chapter, decision trees are used to
categorize individual image pixels, and so the questions, or “split tests”, at each
node are based on image information. The specific tests used in this work are shown
in Figure 7.2.

A randomized decision forest combines the output of many different decision
trees, each of which has a different structure and split tests. The term “randomized”
refers to the training algorithm in two ways. Firstly, each tree is trained on a random
subset of the data following the method outlined in Section 7.3.1.1. Secondly, when
building the tree, several candidate split tests are chosen at random from a large

Fig. 7.1 Example Decision Tree. This is an example decision tree for determining what to
do about breakfast. At each node a simple split test is performed, and the result of that test is
used to determine which child to choose. This process is repeated until a leaf node is reached,
with each leaf encoding a particular decision to be made that is based upon all of the tests
performed to reach that node.

176 M. Johnson and J. Shotton

Label Test Domain
1 A[z0]
2 log(A[z0])
3 A[z0]+B[z1]
4 A[z0]−B[z1]
5 |A[z0]−B[z1]|
6 A[z0] log(B[z1])
7 A[z0]×B[z1]
8 A[z0]/B[z1]

Fig. 7.2 Pixel Comparison Split Tests. The split tests in a semantic texton forest consist of
pixel combinations within a square neighborhood centered on the pixel to be categorized of
size w×w. z0 and z1 are channels in the image, e.g., R, G and B in RGB images. It is not
necessary that z0 = z1.

pool of potential features, and the test that optimally splits the data (under some op-
timization criterion) is taken. These two forms of randomization help generalization
by ensuring that no two trees in the forest can overfit to the whole training set.

Let us formalize notation. For the forests described in this chapter, the goal is
to determine the category c of a pixel p, given the context around that pixel. We
assume a labeled training set, such as that in Figure 7.4. Each forest contains trees
with with nodes n, and leaf nodes l. Associated with each node is a learned category
distribution P(c|n). An example semantic texton tree can be seen in Figure 7.3, in
which a tree has been trained on sheep and grass images and can effectively segment
an image according to these two semantic categories.

When a new pixel is to be classified, the whole forest achieves an accurate and
robust classification by averaging the class distributions over the leaf nodes L(p) =
(l1, . . . , lT) reached by the pixel p for all T trees:

P(c|L(p)) =
T

∑
t=1

P(c|lt)P(t) . (7.1)

An example of the overall structure of the forest can be seen in Figure 7.5.
Existing work has shown the power of decision forests as either classifiers

[3, 15, 18] or a fast means of clustering descriptors [20]. In this chapter we will
examine an extended model in which the forest is used both for classification and
for a hierarchical clustering.

7.3.1 Training the Forest

Each tree in the forest is build separately on a subset of the training images. We
describe below how each tree is built greedily, and the parameter settings that will

7 Semantic Texton Forests 177

Fig. 7.3 Sample Semantic Texton Tree. This is an actual semantic texton tree, trained on 23
images of grass and sheep as described in Section 7.3.1.1. The split tests are shown at each
split node as the image patch (w = 7). The two triangles indicate the offset pixel location
(relative to the center of the grid) and their colors indicate the image color channel used
for this split test. The leaf nodes are represented by 8 patches sampled from the training
pixels which reached those nodes and the distribution P(x|c) for that leaf node where green
represents grass and blue represents sheep. The input image is an unseen test image, with the
resulting semantic segmentation shown below.

178 M. Johnson and J. Shotton

Fig. 7.4 Training Data. A tree is trained on ground-truth labeled images like these above from
the MSRC dataset [30], in which each pixel is labelled with an object category (indicated by
colors).

Fig. 7.5 Semantic Texton Forest Structure. The forest is made up of T binary trees. Each split
node n in a tree (blue circles) has a test associated with it, and based upon the result of that
test one or the other child is chosen. When a leaf node l in a tree t is reached (green circles),
the P(c|lt) distribution for that leaf is used as a soft category decision for the test pixel. In this
figure, a sample decision path for each tree is denoted by a series of yellow circles. The final
decision is a combination of P(c|lt) for all t ∈ T .

affect this. We also discuss how to learn invariances to rotation, scale and other
fundamental image transformations.

7.3.1.1 Building a Tree

The training data consists of a set P of pixels sampled from training images at every
4th pixel, and ignoring pixels marked as background. This sub-sampling decreases
the time required for tree construction. To ensure good estimates of the tree class
distributions, all pixels are used later to “fill” the tree after construction as described
below in Section 7.3.1.3.

Each tree is constructed by recursively partitioning P into two subsets Ple f t and
Pright based upon a split test. Ple f t is used to create the left subtree and Pright is used
for the right, repeating the process until a stopping condition is met. The split test
used to partition P is chosen in the same manner as [15]: by searching over a set of

7 Semantic Texton Forests 179

possible tests and choosing that which maximizes the expected gain in information
about the node categories. The information gain is calculated as

ΔE =−|Ple f t |
|P| E(Ple f t)− |Pright |

|P| E(Pright) , (7.2)

where E(I) is the Shannon entropy of the classes in the set of examples P.

7.3.1.2 Parameters

Training a randomized decision forest involves several parameters, including:

Type of Split Tests. The types of split tests used can play a significant role in tree
training and performance, with different tests acting in a complimentary manner.

Number of Trees. The number of trees in the forest is a tradeoff between accuracy
and speed.

Information Channels. The number and type of information channels in the image
and how they are processed can have a large impact on which tests should be
chosen and on model generalization. In the case of color images, this takes the
form of the encoding method chosen for the color at each pixel.

Maximum Tree Depth. Deeper trees are more powerful classifiers, but more prone
to overfitting.

Value of Window Size. The size of the window around each pixel w can effect
whether the tree learns local image characteristics or contextual information.
Larger windows provide more discriminative features but ones that are less likely
to generalize.

The choice of these parameters depends heavily on the nature of the dataset, and
should be optimized against a validation set. Smaller datasets will tend to need many
shallower trees, whereas larger datasets make generalization easier and so fewer
deeper trees may work well. We discuss below the results of several experiments
designed to discover the best parameters for the task of pixel-level category infer-
ence. The cost of performing a full exploration of the parameter space is prohibitive,
and so our exploration varies one parameter while holding the others constant.

Of particular interest are the types of split tests made available to the training
algorithm. The pixel tests listed in Figure 7.2 are those used in the experiments
below, where A[z0] and B[z1] are the values of pixels within a patch of size w×w
centered on the training pixel. The channels z0 and z1 do not have to be the same.
While some test types have a basis in image structure (the difference and absolute
difference of pixels is invariant to a global intensity shift, and signifies edges in the
image), others are just possible discriminative combinations of pixels. In addition
to these pixel tests, we evaluate two rectangle-based tests: the Haar-like features
of [37] and the rectangle sum features of [30].

7.3.1.3 Supervision

Labeled image data is used to train a semantic texton forest, consisting pairs (p,c)
of pixels and category labels. In the case of full supervision each pixel is given a

180 M. Johnson and J. Shotton

training label as shown in Figure 7.4. During training, the distribution P(c|n) is
computed as a normalized histogram of the training tuples which reached a particu-
lar node n:

P(c|n) =
Hn[c]
∑c Hn[c]

, (7.3)

where Hn[c] is the number of pixels of class c that passed through a node n during
training. The process of computing this histogram at each node will be referred to as
“filling” the forest. Filling is performed using all of the pixels in the training data, by
passing each pixel down a tree and incrementing the relevant histogram bin Hn[c].
If desired, a small Dirichlet prior corresponding to a extra constant count added to
all classes can be used to smooth the distributions.

In the case of partial supervision, we do not have pixel labels, but rather the set
of categories present somewhere in the image. In other words, we have just the dis-
tribution P(c|x) where x is an observed topic for the image. In this circumstance, the
topic can be thought of as an underlying meaning generating the categories in the
image, for example a “forest” topic is more likely to produce “tree” pixels, whereas
a “city” topic would be more likely to produce “building” pixels. As we have no
data about P(p|c), it is modeled as a uniform distribution. Thus, to create train-
ing points to use in a partially supervised forest we first sample a category using
P(c|x) and then sample a pixel using P(p|c). The forest is subsequently trained on
these points, and the result has a fairly low pixel accuracy (though still greater than
random chance).

7.3.1.4 Learning Invariances

Although using raw pixels as features is much faster than first computing descriptors
or filter-bank responses, one risks losing their inherent invariances. Thus, as the
distribution P(c|n) is estimated with the training images these images are augmented
with copies that are artificially transformed geometrically and photometrically as
done by Lepetit in [15]. This allows the forest to learn the right degree of invariance
required for a particular problem. In these experiments the transformations used
were rotation, scaling, and left-right flipping as geometric transformations, as well
as affine photometric transformations.

7.3.2 Experiments

In the following experiments, accuracy was measured as the mean percentage of
pixels labeled correctly over all categories. A confusion matrix M was computed
for each image over pixels p ∈ PR, where PR is the set of test pixels. Thus, the
individual cells of M are computed as

M[i, j] = |{p : p ∈ PR,G(p) = ci,argmaxcP(c|Lp) = c j
} |, (7.4)

using the image ground-truth G. For these experiments the mean category accuracy
μ is reported, calculated as

7 Semantic Texton Forests 181

μ =
1
Z

Z

∑
i=1
αi (7.5)

where Z is the number of categories and

αi =
M[i, i]
∑ j M[i, j]

. (7.6)

A second metric is the overall accuracy α , calculated as

α = ∑i M[i, i]
∑i∑ j M[i, j]

. (7.7)

The mean category accuracy μ ensures a fair balance across categories which po-
tentially have very different numbers of pixels in the data. The overall accuracy α ,
on the other hand, tells us what proportion of the image the system can reliably seg-
ment. Both are important to get a sense of accuracy of the system, e.g., a high α
and low μ indicates overfitting to a particular category which is disproportionately
represented in the dataset.

The control training scenario was set as the following parameters:

Parameter Value
Number of Trees 5
Maximum Depth 10

Type of Split Tests A, A + B, A log(B), |A−B|
w 10

Color Channels CIELab
Data % Per Tree 25

In each experiment, a single training parameter was changed while keeping all
others constant to see the effect it had on test performance. Experiments were per-
formed on the MSRC21 dataset [30]. In each experiment, ten trees were trained on
a subset of the data and then filled with all of the data points as described in Section
7.3.1.4. Ten forests of five trees (with the exception of the number of trees experi-
ment) were then created from permutations of these ten trees. The reported values
are the mean α and μ of 10 segmentation trials run with those forests over the test
data after being trained on the training and validation data with the specified param-
eters. Error bars indicating the standard error are omitted due to the remarkably low
error on the values making them indiscernible. It is quite possibly due to the fact that
the different forests being used for each trial are 5 trees chosen from the same set of
10, but even so it is intriguing to note that 10 different trees trained independently
on different subsets of the data but with the same parameters achieved very close to
the same accuracy on the test data.

In Figure 7.6, one can see the effect different combinations of feature tests has on
segmentation performance. In each of the five trials a different random order of five
feature tests was chosen, shown below in Table 7.2, and in each step an additional
feature was added for the tree to use, accompanied by an increase in the feature pool

182 M. Johnson and J. Shotton

Table 7.1 Test Proportions for MSRC21 Dataset. A semantic texton forest was trained on
the MSRC21 dataset, making all of the tests in the table available to it during training. The
counts for each test were recorded over the entire forest to get a sense of which tests were
most useful for categorization. As can be seen, the rectangle-based features performed best
and were chosen at a much higher rate than the others. Note that the Haar features are a
superset of the additive and subtractive pixel features.

Counts %
Rectangle 670930 39.89%

Haar 316368 18.81%
A 179816 10.69%

A+B 118638 7.05%
A×B 107146 6.37%
|A−B| 105794 6.29%

A log(B) 92274 5.49%
A−B 45968 2.73%
A/B 44954 2.67%
Total 1681888

size. One trial was done with every test and a pool size of 1000 (the rightmost bar
on the graph) showing the practical limit on accuracy. Every additional test made
available to the algorithm will usually improve performance, but there are certain
groups of tests which work together better than others. So it is that performance
can actually drop, sometimes dramatically, when a new test is added that elsewhere
when added improved performance. The ideal mixture of tests depends to a certain
extent on the data, and these experiments should only be considered in so far as
they show the rate at which adding different feature tests improves performance.
One good method of finding out which tests work best for a dataset is to train one
forest with a large pool size and every available test. As each tree will choose tests
based purely on information gain, this will give a very good indicator of which tests
work best for the dataset, and a subset can be chosen either for quicker training or to
optimize tree performance depending on the situation at hand. As an example, Table
7.1 gives the proportions of tests for the forest which had every test available to it,
showing that for the evaluation dataset rectangle features like the rectangle sum [30]
and Haar-like features [37] perform very well.

In Figure 7.7 the effect of the number of trees in the forest can be seen. It is clear
that there are diminishing returns as forest size increases. In order to investigate
the effects of different methods of representing color on performance forests were
trained on grayscale, RGB, CIELab, and HSV images, the results of which can be
seen in Figure 7.8. CIELab clearly results in the best performance, most likely due
to its useful features (e.g., meaningful perceptual distances, device independence)
for computer vision as described in [12]. The effect of different tree depths is shown
in Figure 7.9. The values chosen for this trial were dependent on the dataset size, as
the amount of data needed to fill a tree increases exponentially with tree depth, but
it can be seen that as the number of nodes in the tree increases so does its classifi-
cation ability, which is to be expected due to the way in which the trees are trained

7 Semantic Texton Forests 183

Table 7.2 Test Domain Experimental Setup. The size of the feature pool and the number of
different feature domains those features could be drawn from increases from right to left, with
25 total trials being performed. Results are shown in Figure 7.6.

Trial 1 2 3 4 5
1 A A×B A−B Haar |A−B|
2 |A−B| A−B A/B A log(A)
3 A/B A−B log(A) A×B A
4 log(A) Rectangle A−B |A−B| A+B
5 A×B A A+B A log(B) A/B

Pool Size 100 200 300 400 500

(i.e. nodes will stop splitting if there is no expected information gain). Finally, the
effect of the w parameter (the size of the window test pixels can be chosen from)
can be seen in Figure 7.10. The effect here of a steady increase in average accuracy
coupled with an increase and then decline in overall accuracy is very interesting.
This is likely due to the fact that the easier categories which take up many of the
pixels in the dataset (e.g., grass and sky) do not require the context of nearby pixels
to be classified, but the smaller and more complex categories can take advantage of
nearby information to aid in classification that is only possible when the window of
possible pixels is significantly increased.

7.4 Image Categorization

The bag of words histogram has been extensively used in recent years for object
categorization in computer vision [32, 6, 9, 25, 31, 28, 40]. As an alternative to the
typical method for creating these histograms (using interest points, descriptors and
a vector quantized patch dictionary) once can use the localized bag of semantic tex-
tons (BoST), illustrated in Figure 7.11. This extends the bag of words representation
with low-level semantic information, as follows.

Given for each pixel p the leaf nodes L(p) = (l1, . . . , lT) and inferred class distri-
bution P(c|L(p)), one can compute over image region r:

1. A non-normalized histogram Hr(n) that concatenates the occurrences of tree
nodes n across the different trees [20], and

2. A conditional distribution over the region given by the average class distribution
P(c|r) = ∑p∈r P(c|Lp)P(p).

Experiments were performed with tree histograms (unlike the leaf histograms
of [20]) where both leaf nodes l and split nodes n are included in the histogram,
such that

Hr(n) = ∑
n′∈child(n)

Hr(n′) . (7.8)

This histogram therefore uses the hierarchy of clusters implicit in each tree. Each
P(c|L(p)) is already averaged across trees, and hence there is a single region prior
P(c|r) for the whole forest.

184 M. Johnson and J. Shotton

Fig. 7.6 Effect of Different Test Domains. The values shown are the mean over ten trials of
the mean category accuracy (μ). The computation for μ is described in Section 7.3.2. This
graph tracks the effect of increasing the test domains on accuracy, with the overall trend being
that the larger the domain of tests the more accurate the system becomes, though there is
quite a lot of variation with some compositional changes, particularly in set 3. For reference,
a system trained with all possible tests and a pool size of 1000 is shown as the rightmost bar.
The meanings of the numbers in the graph are explained in Table 7.2.

7.4.1 Tree Histograms and Pyramid Matching

Consider first the BoST histogram computed for just one tree in the STF. The kernel
function (based on [11]) is then

K(P,Q) =
1√
Z

K̃(P,Q) , (7.9)

where Z is a normalization term for images of different sizes computed as

Z = K̃(P,P)K̃(Q,Q) , (7.10)

and K̃ is the actual matching function, computed over levels of the tree as

K̃(P,Q) =
D

∑
d=1

1
2D−d+1 (Id−Id+1) , (7.11)

using the histogram intersection I [33]

Id =∑
j

min(Pd [j],Qd [j]) , (7.12)

7 Semantic Texton Forests 185

Fig. 7.7 Effect of Increasing the Number of Trees. The values shown are the mean over
ten trials of the overall per-pixel accuracy (α) and the mean category accuracy (μ). The
computations for α and μ are described in Section 7.3.2. We see here a clear logarithmic
growth in performance with forest size, with the elbow of the graph occurring at 5 for this
dataset.

Fig. 7.8 Effect of Different Channels. The values shown are the mean over ten trials of the
overall per-pixel accuracy (α) and the mean category accuracy (μ). The computations for α
and μ are described in Section 7.3.2. There is a slight but consistent advantage to be gained
by using orthogonal color spaces over RGB, and the addition of color gives a significant
improvement over grayscale, as is to be expected.

186 M. Johnson and J. Shotton

Fig. 7.9 Effect of Maximum Depth. The values shown are the mean over ten trials of the
overall per-pixel accuracy (α) and the mean category accuracy (μ). The computations for α
and μ are described in Section 7.3.2. We see here that tree depth results in a linear growth
in accuracy, particularly for class average accuracy. While the discriminative power of the
forest increases with maximum depth, so does the possibility of overfitting to the data. This
can be avoided by only training on subsets of the data, but one is faced with the problem of
having enough data to fill the tree so as to model the correct uncertainty (as the amount of
data required increases exponentially with each additional level)

where D is the depth of the tree, P and Q are BoSTs, and Pd and Qd are the portions
of the histograms at depth d, with j indexing over all nodes at depth d. There are no
nodes at depth D+ 1, hence ID+1 = 0. If the tree is not full depth, missing nodes j
are simply assigned Pd[j] = Qd [j] = 0.

7.4.2 Categorization Results

In this experiment, a forest was trained using the following parameters, selected
based on the results of the experiments in Section 7.3.2:

Parameter Value
Number of Trees 5
Maximum Depth 10

Feature Tests A, A+B, A log(B), |A−B|, Rectangle, A−B
Pool Size 600

w 10
Channels CIELab

Data % 25

7 Semantic Texton Forests 187

Fig. 7.10 Effect of w. The values shown are the mean over ten trials of the overall per-
pixel accuracy (α) and the mean category accuracy (μ). The computations for α and μ are
described in Section 7.3.2. We see here a general trend by which as the parameter w increases
class average accuracy increases, but overall accuracy declines. Further experiments beyond
the value of 55 were inconclusive due to the effect of less data being available to the training
process, but seem to support this trend.

Fig. 7.11 Bags of semantic textons. Within a region r of image I we generate the semantic
texton histogram and region prior. The histogram incorporates the implicit hierarchy of clus-
ters in the STF, containing both STF leaf nodes (green) and split nodes (blue). The depth d
of the nodes in the STF is shown. The STFs need not be to full depth, and empty bins in the
histogram are not shown as the histogram is stored sparsely. The region prior is computed as
the average of the individual leaf node category distributions P(c|l).

The experiments were performed on Oliva and Torralba’s scene recognition
dataset from [23], in order compare the performance of SVM classifiers trained
using semantic texton forests and a standard bag of words method (using Lowe’s
SIFT detector and descriptor [16], a vector quantized dictionary and a radial ba-
sis function-based kernel). As can be seen in Figure 7.12, semantic texton forests
achieve better performance than the naive bag of words technique. What is worth

188 M. Johnson and J. Shotton

Fig. 7.12 Scene Categorization Results. The values shown are image accuracy per category.
An SVM was trained using BoSTs, and its performance was compared against an SVM trained
using a standard bags-of-words model using Oliva and Torralba’s scene recognition dataset
from [23]. As can be seen, the technique is on par, if not slightly better in some cases, than
the bag of words based algorithm.

mentioning is that STFs are able to combine many different cues in the image aside
from interest points, yet are able to compute the BoST for an image very efficiently.
Due to the complexity of the process (O(n logn)) it is feasible for this system to
perform categorization at frame rate, which would be difficult to achieve for many
bag of words models.

7.5 Semantic Segmentation

The idea of the semantic segmentation of an image is built on a model of image
generation which is based on dividing the real-valued and continuous visual sig-
nal of an image into cells, or a regular rectangular sample grid, each of which is
sufficiently explained by an underlying label. To perform a semantic segmentation
of an image is to infer the semantic label for every cell. For example, look at the
image in Figure 7.13. Using simple semantic labels, the pixels in the image have
been explained, each one generated by some unknown model for the category label.
If such a segmentation can be achieved, then the image can be catalogued for im-
age search, used for navigation, or any number of other tasks which require basic
semantic understanding of arbitrary scenes.

7 Semantic Texton Forests 189

Fig. 7.13 Semantic Segmentation. A semantic segmentation of an image is one which groups
the pixels together by common semantic meaning. Shown is one such segmentation of an
image, using as pixel labels the objects in the scene.

7.6 Soft Classification of Pixels

Our formulation of semantic segmentation centers on the cell model, presented
graphically in Figure 7.14 (graphical models are a common method of visualiz-
ing joint distributions over several random variables, see [2]). In this model, for
every image there is a random variable X whose value represents the subject matter,
or broad image-level category, of the image (e.g., the forest, an office, the moon).
The likelihood of the various image-level categories are governed by some learned
parameter χ . This topic generates cell labels ci for each grid cell i. These are gen-
eral semantic categories, that is categories of object or entity (e.g., trees, computers,
rocks). The conditional probability of a semantic category given the image-level
category is governed by the learned parameter γ . Finally, we have the appearance
of a cell (e.g., a pixel patch, a descriptor, a histogram) which is generated by the

Fig. 7.14 Cell-based Image Generation Model. This figure is a graphical representation of the
model [2]. For each image a particular topic is chosen, represented by the random variable x.
These can be thought of as scenes (e.g., the forest, an office, the moon). For a particular topic,
we generate I cells on a grid, where each cell has a semantic category c that generates the
appearance a. To perform a semantic segmentation, we infer the semantic category for each
grid cell.

190 M. Johnson and J. Shotton

(a) (b)

(c) (d)

Fig. 7.15 Cell Segmentation. (a) is the original image. (b) is the image with pixel-level maxi-
mum a posteriori (MAP) labeling. In (c), the distributions are subsampled from (b) by 8, and
in (d) the image in (b) has been subsampled by 16. As grid square size increases, detail is lost
but the overall accuracy of the segmentation increases.

cell category using some process which adds in some noise (indicated by σ), e.g., a
normal distribution over intensity values.

Naturally, a normal distribution over intensity values is not a sufficient generative
patch model. While a general patch model may be out of reach in the near future, the
promising jigsaw model [14] and other emerging techniques utilizing deep inference
are showing great promise towards achieving this enviable goal. In the meantime,
however, the best results have been obtained via discriminative methods. Since the
appearance is observed, we can infer the category label from the appearance (es-
sentially, reverse the arrow between c and A) and infer c by marginalizing over the
topics and incorporating a discriminative model for P(c|A). Previously we discussed
semantic texton forests and their ability to estimate a distribution over a set of labels
for arbitrary pixel regions in a discriminative manner. Now we will discuss how they
can be used to infer P(c|A) at the level of an image grid cell.

We have already established that we can infer P(c|A) for cells at the level of a
pixel with a semantic texton forest:

P(c|Ap) = P(c|L(p)) ∝
T

∑
t=1

P(c|lt)P(t) . (7.13)

7 Semantic Texton Forests 191

As the size of a cell increases, we are faced with the problem of agglomerating the
information held in individual pixels to regions. We can calculate this as

P(c|Ar) = P(c|r)∝∑
p

P(c|L(p))P(p|r) , (7.14)

which leaves the conditional distribution P(p|r) to be modeled. There are two prac-
tical choices for this. The first is a bivariate normal distribution with diagonal co-
variance and centered on the cell, and the second is

P(p|r) =
{ 1
|Pr | p ∈ Pr

0 otherwise
(7.15)

where Pr is the set of pixels in a region. We use the latter method here due to the
easy of computation, but the former likely results in a better estimate. Figure 7.15
depicts both the pixel- and cell-level maximum a posteriori labelings for an image.

So far, we have discussed the conditional distribution P(c|A), but we have yet to
touch on P(c|X) or P(X). In the following section, we will discuss how it is possible
to again use semantic texton forests to infer the parameter χ from the image data.

7.7 Image-Level Semantic Constraints

The inference of P(X) is essentially the task of image categorization. The task of
categorizing an image consists of determining those categories (e.g., forest images,
office images, moon images) to which an image belongs. There has been much re-
search performed on this problem, with the most successful of previous approaches
using global image information [24], bags of words [9] or textons [39]. The STF
categorization algorithm can be extended to exploit not just the hierarchy of seman-
tic textons but also the node prior distributions P(c|n). A non-linear support vector
machine (SVM) is still used, which depends on a kernel function K that defines the
similarity measure between images. To take advantage of the hierarchy in the STF,
we adapt the innovative pyramid match kernel [11] to act on a pair of BoST his-
tograms computed across the whole image, computed in the same way as described
in Section 7.4.

The kernel over all trees in the STF is calculated as K = ∑t κtKt with mixture
weights κt . Similarly to [40], κt = 1

T results in the best categorization results. This
method is very effective, but can be improved by using the learned distributions
P(c|n) in the STF. If P(c|n) is large for class c and node n, then a large count of
node n is a strong indicator that class c is present in the image. If P(c|n) is small,
less information is gained since the likely presence of other categories only helps
as context. For example, if the target of a search is grass in an image, the count
of nodes likely to be grass is more important than those likely to be motorbike.
Following this intuition, a 1-vs-others SVM kernel Kc is built per category, in which
the count for node n in the BoST histogram is weighted by the value P(c|n). This
helps balance the categories, by selectively down-weighting those that cover large

192 M. Johnson and J. Shotton

image areas (e.g., grass, water) and thus have inappropriately strong influence on
the pyramid match, masking the signal of smaller classes (e.g., cat, bird).

In these experiments, the improvement that the pyramid match kernel on the hier-
archy of semantic textons gives over a radial basis function on histograms of just leaf
nodes is demonstrated. An improvement using the per-category kernels Kc instead
of a global kernel K is also shown.

7.7.1 Categorization Results

The mean average precisions (AP) in Table 7.3 compare the modified pyramid match
kernel (PMK) to a radial basis function (RBF) kernel, and compare the global kernel
K to the per-category kernels Kc. In the baseline results with the RBF kernel, only
the leaf nodes of the STF are used, separately per tree, using term frequency/inverse
document frequency to normalize the histogram. The PMK results use the entire
BoST which for the per-category kernels Kc are weighted by the prior node distribu-
tions P(c|n). Note that the mean AP is a much harder metric and gives lower num-
bers than recall precision or AuC; the best result in the table shows very accurate
categorization. As can be seen in Table 7.3, the pyramid match kernel considerably
improves on the RBF kernel. By training a per-category kernel, a small but notice-
able improvement is obtained. Due to its performance, the PMK with per-category
kernels to train the SVM is used as χ .

Table 7.3 Image categorization results. (Mean AP).

Global kernel K Per-category kernel Kc

RBF .499 .525
PMK .763 .783

7.7.2 The Image Level Prior

To relate this system of image categorization back to the cell model for semantic
segmentation, the task the SVM is performing is to infer the value of X for an image.
In essence, instead of χ being a global prior distribution over topics, it is this system,
and depends on the BoST computed for a particular image in order to compute P(X).
We can think of P(X) as being related to χ thus:

P(X) = χ(BoSTd)[x] (7.16)

where χ is the SVM classifier.
Moreover, since X and c in the scenario just presented have the same domain, γ

is not a learned distribution but instead a binary function:

γ[t,c] =
{

1 if x = c
0 otherwise

(7.17)

7 Semantic Texton Forests 193

Fig. 7.16 MSRC Categorization Results Shown here are the precision recall curves for all of
the categories in the MSRC21 dataset.

Thus, whereas one would usually marginalize over X when computing P(ci) in the
following manner (substituting lower case letters for observed variables):

P(ci) = P(ci|ai)∑
X

P(X)P(ci|X)∏
j �=i
∑
c j

P(c j|X)P(c j|a j) (7.18)

this equation is derived instead :

P(ci) = P(ci|ai)P(ci|x)P(x)∏
j �=i
∑
c j

P(c j|x)P(c j|a j) (7.19)

194 M. Johnson and J. Shotton

which, given the binary nature of P(c|T) = λ [t,c] and that in this situation t ≡ c,
collapses further to:

P(ci) = P(ci|ai)P(ci)∏
j �=i

P(c j|a j) (7.20)

where P(ci) is the result of the SVM classifier and P(c|A) is computed using the STF
as described above. Furthermore, the effect of the right-hand product is estimated
by a power α on P(c) in the results presented in this chapter. Since this is no longer
inference per se, the result of this process is referred to as an “image level prior”,
or ILP. While these optimizations result in a system which is very efficient, they are
made at the cost of a more powerful and expressive model.

7.8 Compositional Constraints

To demonstrate the power of the BoSTs as features for segmentation, they are inte-
grated into the TextonBoost algorithm [30]. The goal is to segment an image into
coherent regions and simultaneously infer the class label of each region. In [30], a
boosting algorithm selected features based on localized counts of textons to model
patterns of texture, layout and context. The context modeled in [30] was “textural”,
for example: sheep often stand on something green. We adapt the rectangle count
features of [30] to act on both the semantic texton histograms and the BoST region
priors. The addition of region priors allows us to model context based on seman-
tics [26], not just texture. Continuing the example, this new model can capture the
notion that sheep often stand on grass.

The segmentation algorithm works as follows. For speed, a second randomized
decision forest is used in place of boosting. This segmentation forest is trained to act
at image cells i, using bags and priors computed using Equation 7.15 for P(p|r =
i). At test time, the segmentation forest is applied at each pixel p densely or, for
more speed, on a grid. The most likely class in the averaged category distribution
gives the final segmentation for each cell. The split tests compute either the count
Hr+i(n = n′) of semantic texton n′, or the probability P(c | r + i) of class c, within
rectangle r translated relative to cell i. By translating rectangle r relative to the cell
i being classified, and by allowing r to be a large distance away from i (up to half
the image size), such features can exploit texture, layout and context information.
This extension to their features exploits semantic context by using the region prior
probabilities P(c|r + i) inferred by the semantic textons.

7.9 Experiments

Before presenting in-depth results for segmentation, let us look briefly at the STFs
themselves. In Figure 7.17, we visualize the inferred leaf nodes L = (l1, . . . , lT)
for each pixel i and the most likely category ci = argmaxci P(ci|L). Observe that

7 Semantic Texton Forests 195

Fig. 7.17 Textonizations. Shown here are a large selection of textonizations performed by a
semantic texton forest. The first column shows the image, the middle five are textonizations
from the five trees in the forest, followed by the ground truth image and the combined tex-
tonization of the forest. In the textonizations, a separate color is given to each texton index to
give a sense of leaf-membership for a pixel.

the textons in each tree capture different aspects of the underlying texture and that
even at such a low level the distribution P(c|L) contains significant semantic in-
formation. Table 7.4 gives a naı̈ve segmentation baseline on the MSRC dataset by
comparing ci to the ground truth.

Clearly, this segmentation is poor, especially when trained in a weakly supervised
manner, since only very local appearance and no context is used. Even so, the signal
is remarkably strong for such simple features (random chance is under 5%). Below

196 M. Johnson and J. Shotton

Table 7.4 Naı̈ve Segmentation Baseline on MSRC21. Using the parameters chosen as a result
of the experiments in Section 7.3.2 we are able to obtain a solid baseline for segmentation.

Global Average
supervised 48.7% 41.5%
weakly supervised 17.7% 27.8%

is shown how using semantic textons as features in higher level classifiers greatly
improves these numbers, even with weakly supervised or unsupervised STFs.

Except where otherwise stated, STFs were used with the following parameters,
hand-optimized on the MSRC validation set: distance w = 31, T = 5 trees, maxi-
mum depth D = 10, 500 feature tests and 5 threshold tests per split, and 1

4 of the
data per tree, resulting in approximately 500 leaves per tree. Training the STF on the
MSRC dataset took only 15 minutes. The tests used were A+B, A−B, |A−B|, and
A, a combination motivated by the experiments in Section 7.3.2 and performance
requirements.

7.9.1 MSRC21 Dataset

We first examine the influence of different aspects of our system on segmentation
accuracy. Segmentation forests were trained using (a) the histogram Hr(l) of just
leaf nodes l, (b) the histogram Hr(n) of all tree nodes n, (c) just the region priors
P(c|r), (d) the full model using all nodes and region priors, (e) the full model trained
without random transformations, (f) all nodes using an unsupervised STF (no region
priors are available), and (g) all nodes using a weakly-supervised STF (only image
labels). The category average accuracies are given in Table 7.5 with and without the
image-level prior.

There are several conclusions to draw. (1) In all cases the ILP improves results.
(2) The hierarchy of clusters in the STF gives a noticeable improvement. (3) The
region priors alone perform remarkably well. Comparing to the segmentation result
using only the STF leaf distributions (34.5%) this shows the power of the localized
BoSTs that exploit semantic context. (4) Each aspect of the BoST adds to the model.
While, without the ILP, score (b) is slightly better than the full model (d), adding

Table 7.5 Comparative segmentation results on MSRC.

Without ILP With ILP

(a) only leaves 61.3% 64.1%
(b) all nodes 63.5% 65.5%
(c) only region priors 62.1% 66.1%
(d) full model 63.4% 66.9%
(e) no transformations 60.4% 64.4%
(f) unsupervised STF 59.5% 64.2%
(g) weakly supervised STF 61.6% 64.6%

7 Semantic Texton Forests 197

[30] [36] Ours Ours + ILP

building 62 52 41 49
grass 98 87 84 88
tree 86 68 75 79
cow 58 73 89 97

sheep 50 84 93 97
sky 83 94 79 78

airplane 60 88 86 82
water 53 73 47 54
face 74 70 87 87
car 63 68 65 74

bicycle 75 74 72 72
flower 63 89 61 74
sign 35 33 36 36
bird 19 19 26 24
book 92 78 91 93
chair 15 34 50 51
road 86 89 70 78
cat 54 46 72 75
dog 19 49 31 35

body 62 54 61 66
boat 7 31 14 18

Overall 71 - 68 72
Average 58 64 63 67

Fig. 7.18 MSRC21 segmentation results. Left: Segmentations on test images using semantic
texton forests. Note how the good but somewhat noisy segmentations are cleaned up using our
image-level prior (ILP) that emphasizes the categories likely to be present. (Note that neither
a Markov nor conditional random field are used, which could clean up the segmentations to
precisely follow image edges [30]). Right: Segmentation accuracies (percent) over the whole
dataset, without and with the ILP. Highly efficient semantic textons achieve a significant
improvement on previous work.

in the ILP shows how the region priors and textons work together.1 (5) Random
transformations of the training images improve performance by adding invariance.

1 This effect may be due to segmentation forest (b) being over-confident: looking at the 5
most likely classes inferred for each pixel, (b) achieves 87.6% while (d) achieves a better
88.0%.

198 M. Johnson and J. Shotton

Fig. 7.19 Further MSRC segmentation results.

(6) Performance increases with more supervision, but even unsupervised STFs allow
good segmentations.

Given this insight, the algorithm is compared against [30] and [36]. The same
train/test split is used as in [30] (though not [36]). The results are summarized in
Figure 7.18, with further segmentation results in Figure 7.19. Across the whole chal-
lenging dataset, using the full model with ILP achieved a class average performance
of 66.9%, a significant improvement on both the 57.7% of [30] and the 64% of [36].
The global accuracy also improves slightly on [30]. The image-level prior improves

7 Semantic Texton Forests 199

Brookes Ours Ours + ILP TKK Ours + DLP

building 78 33 20 23 22
aeroplane 6 46 66 19 77

bicycle 0 5 6 21 45
bird 0 14 15 5 45
boat 0 11 6 16 19

bottle 0 14 15 3 14
bus 9 34 32 1 45
car 5 8 19 78 48
cat 10 6 7 1 29

chair 1 3 7 3 26
cow 2 10 13 1 20
table 11 39 44 23 59
dog 0 40 31 69 45

horse 6 28 44 44 54
motorbike 6 23 27 42 63

person 29 32 39 0 37
plant 2 19 35 65 40
sheep 2 19 12 30 42
sofa 0 8 7 35 10
train 11 24 39 89 68

tv / monitor 1 9 23 71 72
Average 9 20 24 30 42

Fig. 7.20 VOC 2007 segmentation results. Above: Test images with ground truth and our
inferred segmentations using the ILP (not the DLP). This dataset is extremely challenging
and the resulting segmentations are thus slightly noisier. Below: Segmentation accuracies
(percent) over the whole dataset. The left three results compare the method to the Brookes
segmentation entry [8], and show that it is over twice as accurate. The two results on the
right compare the best automatic segmentation-by-detection entry (see text) [8] with the STF

algorithm using the TKK results as a detection-level prior (DLP). The algorithm improves the
accuracy of segmentation-by-detection by over 10%.

performance for all but three classes, but even without it, results are still highly
competitive with other methods. The use of balanced training has resulted in more
consistent performance across classes, and significant improvements for certain dif-
ficult classes: cow, sheep, bird, chair, and cat. A Markov or conditional random field
is not used here, which would likely further improve our performance [30].

These results used the learned and extremely fast STFs, without needing any slow
hand-designed filter-banks or descriptors. Extracting the semantic textons at every
pixel takes an average of only 275 milliseconds per image, categorization takes 190
ms, and evaluating the segmentation forest only 140 ms. For comparison [30] took
over 6 seconds per test image, and [36] took an average of over 2 seconds per image
for feature extraction and between 0.3 to 2 seconds for estimating the segmentation.

200 M. Johnson and J. Shotton

This algorithm is well over 5 times faster and improves quantitative results. A real-
time implementation of the STFs can be achieved on a standard PC, as the complex-
ity is just O(T D) per pixel.

The following parameter settings were used: T = 50 trees of depth D = 14, with
training examples taken every 10 pixels in a random 50% of the training images, and
using 1000 random feature tests and 20 random threshold tests at each split node.
The ILP smoothing term α = 0.5. To add invariance, the training set was augmented:
the original plus 3 copies with random transformations of rotation up to 6◦, scaling
up to 1.2x, left-right flipping, and affine intensity changes up to 1.2I+0.05. Training
took under 2 hours for the segmentation forest. The resulting forest used a total of
24805 node features and 107311 region prior features.

7.9.2 VOC 2007 Segmentation Dataset

The VOC object recognition challenge added a segmentation task to the competi-
tion in 2007 [8]. This dataset contains 21 extremely challenging categories includ-
ing background. A STF, a segmentation forest, and an ILP were trained on this data,
using the “trainval” split and keeping parameters as for MSRC. The results in Fig-
ure 7.20 compare with [8]. This algorithm performs over twice as well as the only
segmentation entry (Brookes), and the addition of the ILP further improves perfor-
mance by 4%. The actual winner of the segmentation challenge, the TKK algorithm,
used segmentation-by-detection that fills in the detected object bounding boxes by
category. To see if our algorithm could use a detection-level prior DLP (identical
to the ILP but using the detected bounding boxes and varying with image position)
the TKK entry output was used as the DLP. The STF algorithm gave a large 12%
improvement over the TKK segmentation-by-detection, highlighting the power of
STFs as features for segmentation.

7.10 Discussion

We have examined semantic texton forests and their applications to image catego-
rization and semantic segmentation. They act as efficient texton codebooks, which
do not depend on local descriptors or expensive k-means clustering, and when su-
pervised during training can infer a distribution over categories at each pixel. We
examined how the training parameters affect performance, and how a hierarchical
matching kernel can be used in a non-linear SVM classifier to achieve image cat-
egorization. Also, we saw how bags of semantic textons enabled state-of-the-art
performance on challenging datasets for semantic segmentation, and how the use
of an inferred image-level prior significantly improves segmentation results. The
substantial gains of the method over traditional texton-based methods are training
and testing efficiency and improved quantitative performance.

While semantic texton forests are quite powerful, there is much work left to be
done. One limitation of the system is the large dimensionality of the bag of semantic
textons. This necessitates a trade-off between the memory usage of the semantic

7 Semantic Texton Forests 201

texton integral images and the training time if they are computed at runtime. While
using just the region priors can be more memory efficient, this comes at some cost
in pixel accuracy. Another weakness, mentioned previously, is the lack of a model
of the inter-pixel relationships (like the conditional Markov random field from [30])
which incorporates an understanding of local structure in the image when arriving
at a segmentation.

Perhaps the greatest limitation of this technique, however, is the fact that it is a
discriminative learning algorithm and thus requires a fully-supervised training sce-
nario. As the data required must be labeled on a per-pixel basis with a preset number
of categories, this is a large barrier to the general use of semantic texton forests for
image understanding. However, as the genesis of a generative patch model nears, it
is possible that a hybridized version of the technique could be used in partially su-
pervised and unsupervised cases. Perhaps most encouraging are the vast quantities
of training data being created through projects like LabelMe [27], in which humans
provide semantic segmentations of images of all kinds with arbitrary categories.
While difficult to work with, such data could be exploited by discriminative learn-
ing algorithms like the semantic texton forest to understand a wider range of object
categories.

References

1. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural
Computation 9(7), 1545–1588 (1997)

2. Bishop, C.: Pattern Recognition and Machine Learning. Springer-Verlag New York, Inc.
(2006)

3. Bosch, A., Zisermann, A., Muñoz, X.: Image classification using random forests and
ferns. In: Proceedings of the International Conference on Computer Vision (2007)

4. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
5. Breiman, L., Friedman, J., Olshen, R.: Classification and Regression Trees. Wadsworth,

Belmont (1984)
6. Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with

bags of keypoints. In: Proceedings of the International Workshop on Statistical Learning
in Computer Vision, ECCV (2004)

7. Elkan, C.: Using the triangle inequality to accelerate k-means. In: Proceedings of the
International Conference on Machine Learning, pp. 147–153 (2003)

8. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL
VOC Challenge (2007),
http://www.pascal-network.org/challenges/VOC/voc2007/
workshop/index.html

9. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene cate-
gories. In: Proceedings of the International Conference on Computer Vision and Pattern
Recognition (2005)

10. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learn-
ing 36(1), 3–42 (2006)

11. Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification with
sets of image features. In: Proceedings of the International Conference on Computer
Vision (2005)

http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html

202 M. Johnson and J. Shotton

12. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, New Jersey (1989)
13. Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: Proceedings

of the International Conference on Computer Vision, pp. 604–610 (2005)
14. Lasserre, J., Kannan, A., Winn, J.: Hybrid learning of large jigsaws. In: Proceedings of

the International Conference on Computer Vision and Pattern Recognition, Minneapolis
(2007)

15. Lepetit, V., Lagger, P., Fua, P.: Randomized trees for real-time keypoint recognition. In:
Proceedings of the International Conference on Computer Vision and Pattern Recogni-
tion, pp. 775–781 (2005)

16. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Jour-
nal of Computer Vision 60(2), 91–110 (2004)

17. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image seg-
mentation. International Journal of Computer Vision 43(1), 7–27 (2001)

18. Marée, R., Geurts, P., Piater, J., Wehenkel, L.: Random subwindows for robust image
classification. In: Proceedings of the International Conference on Computer Vision and
Pattern Recognition, pp. 34–40 (2005)

19. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Interna-
tional Journal of Computer Vision 60(1), 63–86 (2004)

20. Moosmann, F., Triggs, B., Jurie, F.: Fast discriminative visual codebooks using random-
ized clustering forests. In: Proceedings of the International Conference on Neural Infor-
mation Processing Systems (2006)

21. Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: Proceedings
of the International Conference on Computer Vision and Pattern Recognition (2006)

22. Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image classifi-
cation. In: Proceedings of the International Conference on Computer Vision (2006)

23. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the
spatial envelope. International Journal of Computer Vision 42(3), 145–175 (2001)

24. Oliva, A., Torralba, A.: Building the gist of a scene: The role of global image features in
recognition. Visual Perception, Progress in Brain Research 155(1), 23–26 (2006)

25. Quelhas, P., Monay, F., Odobez, J.M., Gatica, D., Tuytelaars, T.: Modeling scenes with
local descriptors and latent aspects. In: Proceedings of the International Conference on
Computer Vision (2005)

26. Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., Belongie, S.: Objects in
context. In: Proceedings of the International Conference on Computer Vision (2007)

27. Russell, B., Torralba, A., Murphy, K., Freeman, W.T.: Labelme: a database and web-
based tool for image annotation. Journal of Computer Vision 77(1-3), 157–173 (2008)

28. Russell, B.C., Efros, A.A., Sivic, J., Freeman, W.T., Zisserman, A.: Using multiple seg-
mentations to discover objects and their extent in image collections. In: Proceedings of
the International Conference on Computer Vision and Pattern Recognition (2006)

29. Schindler, G., Brown, M., Szeliski, R.: City-scale location recognition. In: Proceedings
of the International Conference on Computer Vision and Pattern Recognition, Minneapo-
lis (2007)

30. Shotton, J., Winn, J., Rother, C., Criminisi, A.: Textonboost for image understanding:
Multi-class object recognition and segmentation by jointly modeling texture, layout, and
context. International Journal of Computer Vision 81(1) (2009)

31. Sivic, J., Russel, B., Efros, A., Zisserman, A., Freeman, W.: Discovering objects and their
localization in images. In: Proceedings of the International Conference on Computer
Vision, Beijing, China, pp. 370–377 (2005)

32. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in
videos. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp.
1470–1477 (2003)

7 Semantic Texton Forests 203

33. Swain, M., Ballard, D.: Color indexing. Int. J. Computer Vision 7, 11–32 (1991)
34. Tuytelaars, T., Schmid, C.: Vector quantizing feature space with a regular lattice. In:

Proceedings of the International Conference on Computer Vision (2007)
35. Varma, M., Zisserman, A.: A statistical approach to texture classification from single

images. International Journal of Computer Vision 62(1-2), 61–81 (2005)
36. Verbeek, J., Triggs, B.: Region classification with markov field aspect models. In: Pro-

ceedings of the International Conference on Computer Vision and Pattern Recognition
(2007)

37. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features.
In: Proceedings of the International Conference on Computer Vision and Pattern Recog-
nition, pp. 511–518 (2001)

38. Winder, S., Brown, M.: Learning local image descriptors. In: Proceedings of the Interna-
tional Conference on Computer Vision and Pattern Recognition (2007)

39. Winn, J., Criminisi, A., Minka, T.: Object categorization by learned universal visual dic-
tionary. In: Proceedings of the International Conference on Computer Vision, Beijing,
China, pp. 1800–1807 (2005)

40. Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for clas-
sificaiton of texture and object categories: A comprehensive study. International Journal
of Computer Vision 73(2), 213–238 (2007)

	Semantic Texton Forests
	Introduction
	RelatedWork
	Randomized Decision Forests
	Training the Forest
	Experiments

	Image Categorization
	Tree Histograms and Pyramid Matching
	Categorization Results

	Semantic Segmentation
	Soft Classification of Pixels
	Image-Level Semantic Constraints
	Categorization Results
	The Image Level Prior

	Compositional Constraints
	Experiments
	MSRC21 Dataset
	VOC 2007 Segmentation Dataset

	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

