Двухступенчатые модели и проблема переобучения в латентном семантическом анализе

В. А. Лексин

Московский Физико-Технический Институт

Научный руководитель К. В. Воронцов

Определения и обозначения

U — множество субъектов (клиентов, пользователей: users);

R — множество объектов (ресурсов, товаров, предметов: items);

Y — пространство описаний транзакций;

Сырые исходные данные:

$$D=(u_i,r_i,y_i)_{i=1}^m\in U imes R imes Y$$
 — протокол транзакций;

Агрегированные данные:

$$F = \|f_{ur}\|$$
 — матрица кросс-табуляции размера $|U| \times |R|$, где $f_{ur} = \operatorname{aggr} \{(u_i, r_i, y_i) \in D \mid u_i = u, r_i = r\}$

Задачи:

- ightharpoonup прогнозирование незаполненных ячеек f_{ur} ;
- ▶ оценивание сходства: K(u, u'), K(r, r'), K(u, r);
- выявление скрытых интересов p(t|u), q(t|r) относительно заданного либо неизвестного набора тем $t=1,\ldots,T$.

Два основных подхода

1. Анамнестические алгоритмы

(Memory-Based Collaborative Filtering)

- хранение всей исходной матрицы данных F;
- сходство клиентов это корреляция строк матрицы F;
- сходство объектов это корреляция столбцов матрицы *F*.

2. Модельные алгоритмы

(Model-Based Collaborative Filtering)

- оценивание профилей клиентов и объектов (профиль — это вектор скрытых характеристик);
- ▶ хранение профилей вместо хранения F;
- сходство клиентов и объектов это сходство их профилей.

Модельные алгоритмы

По данным D оцениваются векторы:

$$\binom{p_{tu}}{t \in T}$$
 — профили клиентов $u \in U$; $\binom{q_{tr}}{t \in T}$ — профили объектов $r \in R$.

Типы модельных алгоритмов:

- 1. Вероятностный латентный семантический анализ.
- 2. Латентный семантический анализ (матричные разложения).
- 3. Двухступенчатая (симметризованная) вероятностная латентная модель.

Латентный семантический анализ (матричные разложения)

$$T$$
 — множество тем (интересов): $|T| \ll |U|$, $|T| \ll |R|$; p_{tu} — неизвестный профиль клиента u ; $P = \begin{pmatrix} p_{tu} \end{pmatrix}_{|T| \times |U|}$; q_{tr} — неизвестный профиль объекта r ; $Q = \begin{pmatrix} q_{tr} \end{pmatrix}_{|T| \times |R|}$;

Задача: найти разложение $f_{ur} = \sum\limits_{t \in T} \lambda_t extstyle{p_{tu}q_{tr}}; \quad F = P^\intercal \Lambda Q;$

Методы решения:

SVD — сингулярное разложение (плохо интерпретируется!); NNMF — неотрицательное разложение: $p_{tu} \ge 0$, $q_{tr} \ge 0$;

Вероятностная интерпретация:

$$\underbrace{\frac{p(u,r)}{f_{ur}?}} = \underbrace{\sum_{t \in T} \underbrace{p(t)}_{\lambda_t} \cdot \underbrace{p(u|t)}_{p_{tu}} \cdot \underbrace{q(r|t)}_{q_{tr}};}_{q_{tr}};$$

$$q(t|r) = \underbrace{\frac{q_{tr}p(t)}{\sum_{\tau \in T} q_{\tau r}p(\tau)};}_{\tau \in T} p(t|u) = \underbrace{\frac{p_{tu}p(t)}{\sum_{\tau \in T} p_{\tau u}p(\tau)}}_{\tau \in T}$$

Вероятностный латентный семантический анализ

Вероятностная модель:

$$p(u,r) = \sum_{t \in T} p(t)p(u|t)q(r|t),$$

p(t) — априорная вероятность темы t; p(u|t) — апостериорное распределение клиентов по теме t; q(r|t) — апостериорное распределение ресурсов по теме t.

Задача максимизации правдоподобия:

$$L = \ln \prod_{u \in U} \prod_{r \in R} p(u,r)^{f_{ur}} = \sum_{u \in U} \sum_{r \in R} f_{ur} \ln p(u,r) \rightarrow \max_{p(t),\, p(u|t),\, q(r|t)}.$$

Вероятностный латентный семантический анализ. EM-алгоритм

Е-шаг:

$$p(t|u,r) = \frac{p(t)p(u|t)q(r|t)}{\sum p(t')p(u|t')q(r|t')}, \quad u \in U, \ r \in R, \ t \in T.$$

М-шаг:

$$p(t) = \frac{\sum_{u \in U} \sum_{r \in R} f_{ur} p(t|u,r)}{\sum_{u \in U} \sum_{r \in R} f_{ur}},$$

$$q(r|t) = \frac{\sum_{u \in U} f_{ur} p(t|u,r)}{\sum_{u \in U} \sum_{r' \in R} f_{ur'} p(t|u,r')},$$

$$p(u|t) = \frac{\sum_{r \in R} f_{ur} p(t|u,r)}{\sum_{r \in R} \sum_{r \in R} f_{u'r} p(t|u',r)}.$$

Двухступенчатая (симметризованная) вероятностная латентная модель

$$T$$
 — множество тем (интересов); $p_{tu} = p(t|u)$ — неизвестный профиль клиента u ; $q_{tr} = q(t|r)$ — неизвестный профиль объекта r ; $p_u = p(u)$ — априорная вероятность клиента u ; $q_r = q(r)$ — априорная вероятность объекта r ;

Вероятность посещения (u,r) записывается двумя способами:

$$p(u,r) = \begin{cases} \sum_{t \in T} p_{u} p_{tu} q(r|t,u); & q(r|t) = \frac{q_{tr} q_{r}}{\sum_{r' \in R} q_{tr'} q_{r'}}; \\ \sum_{t \in T} q_{r} q_{tr} p(u|t,r); & p(u|t) = \frac{p_{tu} p_{u}}{\sum_{u' \in U} p_{tu'} p_{u'}}; \end{cases}$$

Задача: оценить профили p_{tu} , q_{tr} .

Принцип максимума правдоподобия: $\sum\limits_{i=1}^m \ln p(u_i,r_i) o \max\limits_{p_{tu},q_{tr}}$.

Общая идея: алгоритм согласования профилей

Повторять итерации, пока профили не сойдутся:

1. Настройка профилей клиентов p_{tu} при фиксированных q_{tr} :

$$\left\{ \begin{array}{l} \sum\limits_{i=1}^{m} \ln \left(\sum\limits_{t \in T} p_{u} p_{tu} q(r|t) \right) \rightarrow \max; \\ \sum\limits_{t \in T} p_{tu} = 1, \quad \forall u \in U; \end{array} \right.$$

2. Настройка профилей объектов q_{tr} при фиксированных p_{tu} :

$$\begin{cases} & \sum\limits_{i=1}^{m} \ln \left(\sum\limits_{t \in T} q_r q_{tr} p(u|t) \right) \rightarrow \max; \\ & \sum\limits_{t \in T} q_{tr} = 1, \quad \forall r \in R; \end{cases}$$

ЕМ-алгоритм (настройка профилей клиентов)

Скрытые переменные $H_{tr}(u) \equiv p(t|r,u)$ — апостериорная вероятность темы t при посещении объекта r клиентом u.

ЕМ-алгоритм:

повторять, пока профили *р*_{tu} не сойдутся

Е-шаг (вычисление скрытых переменных): для всех объектов $r \in R$, клиентов $u \in U$, тем $t \in T$

$$H_{tr}(u) := \frac{p_{tu}q(r|t)}{\sum\limits_{t' \in T} p_{t'u}q(r|t')};$$

▶ **M**-шаг (максимизация правдоподобия): для всех клиентов $u \in U$, тем $t \in T$

$$oldsymbol{
ho_{tu}} := rac{1}{|D_u|} \sum_{r \in D} H_{tr}(u), \quad ext{где} \quad D_u = ig\{r\colon (u,r) \in Dig\};$$

Симметризованный ЕМ-алгоритм

Инициализировать профили q_{tr} и p_{tu} ; Повторять итерации, пока все профили не сойдутся:

- 1. Фиксировать q_{tr} ; Вычислить q(r|t) по формуле Байеса; Повторять, пока профили клиентов не сойдутся:
 - ▶ Е-шаг: вычислить скрытые переменные $H_{tr}(u)$;
 - ▶ М-шаг: вычислить профили клиентов р_{tu};
- 2. Фиксировать p_{tu} ; Вычислить p(u|t) по формуле Байеса; Повторять, пока профили объектов не сойдутся:
 - ▶ Е-шаг: вычислить скрытые переменные $H_{tu}(r)$;
 - ▶ М-шаг: вычислить профили объектов q_{tr} ;

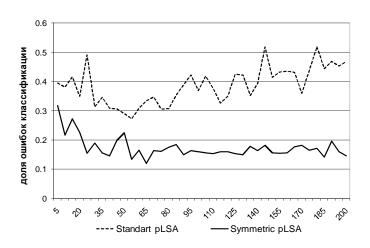
Эксперименты

Данные поисковой машины Яндекс

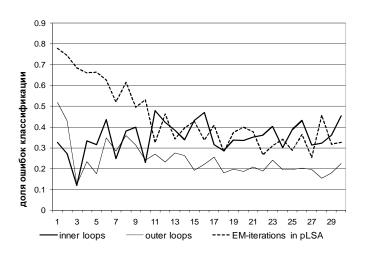
7 дней работы поисковой машины Яндекс; объём лога 3.7 Гб;

14 606 пользователей;

207 696 запросов;

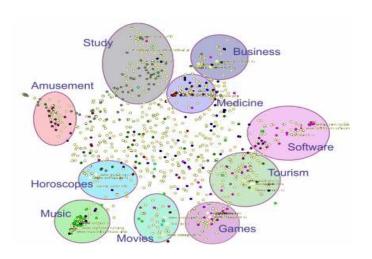

1972636 документов было выдано;

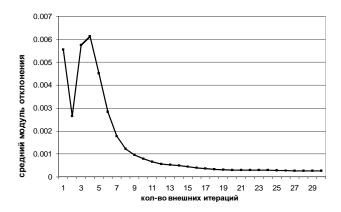
129 600 документов были выбраны пользователями.


Схема эксперимента:

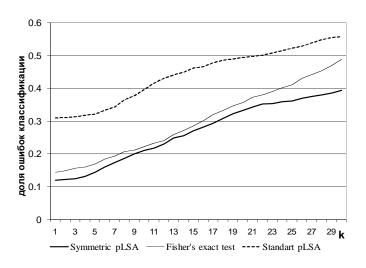
- ▶ Отбор наиболее посещаемых сайтов, |R| = 1024.
- ightharpoonup Отбор наиболее активных пользователей, |U|=1902.
- Введение критериев качества профилей:
 - ▶ 400 сайтов заранее классифицированы на |T| = 12 тематических классов;
- Оптимизация параметров по критерию качества.
- ▶ Построение профилей и оценок сходства сайтов.
- Визуализация: карты сходства.

Результаты: оптимизация количества тем


Оптимизация количества итераций


Примеры восстановления профилей сайтов

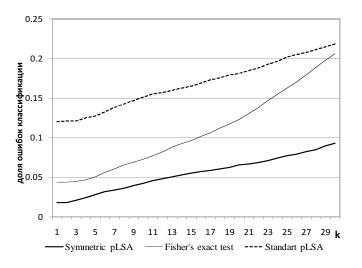
	Компоненты профиля											
Сайт	1	2	3	4	5	6	7	8	9	10	11	12
Музыка												
www.mp3real.ru	0	0.01	0.86	0	0.02	0.04	0.01	0	0.03	0	0.01	0.01
mp3.musicfind.ru	0	0	0.96	0	0	0	0	0	0	0.02	0	0.01
akkordi.ru	0	0.01	0.85	0.02	0.03	0.02	0.01	0	0.01	0.02	0.01	0.03
www.muzzone.com	0.01	0	0.94	0	0	0	0.02	0	0	0.01	0	0.02
mp3forum.ru	0.01	0.01	0.85	0.02	0	0.01	0.04	0.01	0.01	0.03	0	0.01
Сотовая связь												
mindmix.ru/mobile	0.01	0.83	0.02	0	0.01	0.01	0.04	0	0.01	0.05	0	0
www.sotoman.ru	0.01	0.78	0.01	0.02	0.04	0.01	0.04	0.02	0.01	0.03	0.01	0.02
www.mobyline.ru	0.02	0.74	0.02	0.01	0.02	0.01	0.03	0.03	0.07	0.02	0.02	0.01
www.eurotel.ru	0.01	0.87	0.04	0	0.01	0.01	0.01	0	0	0.01	0.02	0.03
www.sota1.ru	0.01	0.91	0.01	0.01	0.01	0	0.02	0	0	0.01	0.01	0
Рефераты, учебные ресурсы												
www.zachetka.ru	0	0	0	0.01	0.16	0.56	0	0	0.02	0.01	0.21	0
edu.mton.ru	0	0	0	0.01	0.45	0.41	0	0	0.01	0	0.1	0
forstudent.msk.ru	0	0	0.01	0.01	0.39	0.44	0.01	0.01	0.02	0	0.1	0
www.5ka.ru	0.01	0.01	0	0.02	0.11	0.65	0.01	0.01	0.02	0.01	0.14	0.01
school.edu.ru	0.01	0.06	0.01	0.05	0.53	0.17	0.01	0.02	0.03	0.01	0.1	0.01
Игры												
gameguru.ru	0.01	0.01	0	0.01	0.02	0.03	0.77	0.01	0.02	0.09	0.01	0.02
www.gameland.ru	0.08	0.01	0.02	0.02	0	0	0.73	0.05	0.02	0.05	0.01	0
www.ag.ru	0	0.02	0.04	0.01	0.01	0.02	0.84	0.01	0	0.01	0.01	0.04
www.neogame.ru	0.02	0.01	0	0	0.04	0.01	0.81	0.04	0.01	0.04	0.01	0.02


Карта сходства

Средний модуль отклонения вероятностей $H_{tr}(u)$ и $H_{tu}(r)$

Сравнение различных метрик по kNN

Данные мебельной компании


Исходные данные:

- история продаж за 3 года работы компании;
- 1920 товаров;
- 1328 постоянных клиентов;
- выборка из 112 256 фактов покупки товаров;
- для оценки качества по товарам использовалось разбиение 403 товаров на 12 категорий;
- ightharpoonup для оценки доли правильно классифицированных товаров использовался метод k ближайших соседей при k=5;

Результаты:

- оптимальное значение функционала 3% ошибок классификации
- оптимальные параметры: |T|=30, 4 внутренних и 4 внешних итераций

Сравнение различных метрик по kNN

Анализ сообщений форума

Исходные данные:

- 564 сообщения;
- 3841 ключевых слов;
- анализировалась встречаемость ключевых слов в сообщениях.

Результаты:

- построены профили длины |T|=10 для каждого сообщения;
- построена функция сходства сообщений на основе профилей.

Направления дальнейших исследований

- ▶ Если $f_{ur} \in Z = \{1, 2, \dots, z_{\text{max}}\}$ рейтинги, то вместо $p(u, r) = \mathsf{P}(f_{ur} \neq \varnothing)$ надо оценивать $(z_{\text{max}} 1)$ вероятностей $p_z(u, r) = \mathsf{P}(f_{ur} \leqslant z), \ z \in Z;$
- ightharpoonup Динамическое обновление профилей при пополнении D;
- Иерархические профили;
- Учёт априорной информации через начальное приближение профилей:
 - тематический каталог объектов;
 - соц-дем (анкеты) клиентов;
- Связь с матричной факторизацией;
- Унифицированный профиль объектов и клиентов;
- Долгосрочный и краткосрочный профили;
- Оценивание сходства по частям профиля.