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Neural Nets and Graphical Models Deep Neural Nets

I NNs is a framework for constructing flexible models

I Neural net is a composition linear and nonlinear functions

argmax(σ[Linear(σ[Linear( ,w)],w)]) = cat

I We can learn it efficiently by back propagation

Problem

Can’t take into account dependences between predicted variables.
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Neural Nets and Graphical Models Structured Prediction

I Non structured – predict simple variable (like a number)

I Structured – predict difficult variable (like a matrix, tree, sequence)

(a) Segmentation, |Y |= #pixel#sigment (b) Tagging, |Y |= 2#tags

(c) Traffic prediction, |Y |=? (d) Translation, |Y |=?
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Neural Nets and Graphical Models Graphical Models

I GMs is a framework for taking into account dependencies between
predicted variables.

I What can we do with exp-large output space? Use local dependences.

I Introduce prior knowledge as a score functions φr (yr ), |yr | is small

φy1,y2(people,male) = 10 is high
φy1,y2(wather , girl) = 0.2 is low
....

I We can introduce non-normalized probability distribution over outputs

p(y |x ,w) =
1

Z

∏
r

φr (x , yr ;w) Energy = −
∑
r

φr (x , yr ;w)

I Inference Task:
y? = arg max

y
p(y |x ,w)

Ashuha Arseniy (MIPT) Deeep Structured Models April 1, 2016 5 / 29



Neural Nets and Graphical Models Log-linear restrictions [Raquel slides !!!]

1. We want to train parameters w of parametric potential
2. Given training data (x , y) ∈ D; estimate the functions fr (y , x ,w)
3. Minimize a typically convex loss and a regularize on training set

Losslog (x , y ,w) = − ln px ,y (y ;w)

Losshinge(x , y ,w) = max
ŷ

(∆(y , ŷ)− wTΦ(x , ŷ) + wTΦ(x , y))

4. The assumption is that the model is log-linear

E (x , y ,w) = −wTφ(x , y)

and the features decompose in a graph

wTφ(x , y) =
∑
r∈R

w t
r φ(x , y)

Problem

How can we remove the log-linear restriction,
to use potentials such as Neural Nets?
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Deep Structured Models Intuition

How can we combine Graphical Models and Deep Neural Nets?

1. Peace-wise learning:
I train deep features → train linear potential → inference in GM

2. Jointly learning:
I train deep features as non linear potential → inference in GM
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Deep Structured Models Definitions [Chen slides]

I We have: scoring function F (x , y ;w), training data (x , y) ∈ D

I Prediction proses is equal finding maximum scoring configuration y?:

y? = arg max
y

F (x , y ;w)

I Introduce probability distribution over configurations as

p(x ,y)(ŷ |w) =
exp F (x , ŷ ,w)∑
y ′ exp F (x , y ′,w)

=
exp F (x , ŷ ,w)

Z (x ,w)

rephrase previous task as finding high probably configuration

I Training proses is finding parameters w by MLE

w = arg maxw log
∏

(x ,y)∈D p(x ,y)(y |w) =

= arg maxw
∑

(x ,y)∈D F (x , y ,w)− ln Z (x ,w)
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Deep Structured Models Simple solution [Chen slides]

We have optimization problem:

∑
(x ,y)∈D

F (x , y ,w)− log
∑
y ′∈Y

exp F (x , y ′,w)

→ max
w

Let’s solve it by gradient assent (will be proof on the board if it’s necessary):

∂

∂w

∑
(x,y)∈D

(F (x , y ,w)− logZ (x ,w)) =

=
∑

(x,y)∈D

∑
y ′∈Y

(p(y ′|w , x)− δ(y ′ = y))
∂

∂w
F (x , y ′,w)

Very easy! Where is a challenge?

Problem: What If Y is exponentially large!

1) How can we represent F? 2) What we can do with sum over Y?
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Deep Structured Models Approximate Learning [Chen slides]

∑
(x ,y)∈D

F (x , y ,w)− log
∑
y ′∈Y

exp F (x , y ′,w)

→ max
w

1. Use the graphical model F (x , y ;w) =
∑

r fr (x , y ;w)

∂

∂w

∑
(x ,y)∈D

(F (x , y ,w)− logZ (x ,w)) =

=
∑

(x ,y)∈D

∑
y ′∈Y

(p(y ′|w , x)− δ(y ′ = y))
∂

∂w
F (x , y ′,w)

(will be proof on the board if it’s necessary):

=
∑

(x,y)∈D

∑
y ′
r ,r

(pr (y
′
r |w , x)− δ(y ′

r = yr ))
∂

∂w
fr (x , y

′
r ,w)

2. How to obtain marginals pr (yr |w , x)?

3. Use beliefs pr (yr |w , x) ≈ br (yr |w , x)
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Deep Structured Models Learning DSM (algo 1) [Raquel slides]

Deep Structured Learning (algo 1)

Repeat until stopping criteria:

1. Forward pass to compute the fr (yr , x ;w) ∀r , yr , (x , y) ∈ D

2. Compute the br (yr |x ,w) by approx inference ∀r , yr , (x , y) ∈ D

3. Backward pass via chain rule to obtain gradient

∂

∂w
=

∑
(x ,y)∈D,y ′r ,r

(br (y ′r |w , x)− δ(y ′r = yr ))
∂

∂w
fr (x , y ′r ;w)

4. Update parameters w

w = w − α · ∂/∂w

Problem

We run inference for each object to make one parameters update
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Efficient Approximate Learning of DSM LP-relaxation

∑
(x ,y)∈D

F (x , y ,w)− log
∑
y ′∈Y

exp F (x , y ′,w)

→ max
w

1. We can represent Z as (will be proof on the board if it’s necessary):

ln Z =
∑
ŷ

exp F (x , ŷ ,w) = max
p(x,y)

Ep(x,y)(ŷ)F (x , ŷ ;w) + H(p(x,y))

2. Assumption, F and H is decomposed into a sum of ”local” functions

F = F (x , y ;w) =
∑
r

fr (x , yr ;w) H = H(p(x,y)) =
∑
r

H(p(x,y),r )

3. Rephrase our task as

min
w

∑
(x,y)∈D

(
max
p(x,y)

{∑
r

p(x,y),r (ŷr )fr (x , ŷr ;w) + H(p(x,y))

}
− F

)
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Efficient Approximate Learning of DSM Approximate marginal distributions

∑
(x ,y)∈D

(
max
p(x,y)

{∑
r

p(x ,y),r (ŷr )fr (x , ŷr ;w) + H(p(x ,y))

}
− F

)
→ min

w

1. We can’t compute true marginals, let’s use beliefs b(x ,y) ≈ p(x ,y)

b(x,y) ∈ C(x,y) =

{
b(x,y),r (·) ≥ 0

∑
yr
b(x,y),r (yr ) = 1 ∀r

b(x,y),r =
∑

ŷp\ŷr p(x,y),p(ŷp) ∀r , ŷr , p ∈ P(r)

2. P(r) = {p ∈ Y : r ⊂ p} and C (r) = {c ∈ Y : r ∈ P(c)}
3. Rephrase our task as

min
w

∑
(x,y)∈D

(
max

b(x,y)∈C(x,y)

{∑
r

b(x,y),r (ŷr )fr (x , ŷr ;w) + H(b(x,y))

}
− F

)

Problem

We need to solve inner problem to compute subgradient!
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Efficient Approximate Learning of DSM Move to Dual task

min
w

∑
(x ,y)∈D

(
max

b(x,y)∈C(x,y)

{∑
r

b(x ,y),r (yr )fr (x , yr ;w) + H(b(x ,y))

}
− F

)

s.t. b(x,y) ∈ C(x,y) marginalization and discrete distribution conditions
H is redefined as barrier function when argument is not a distribution:

1. The Lagrangian of inner problem is:

L(x ,y) =
∑
r ,ŷr

b(x ,y),r (ŷr ) · f̂r (x , ŷr ;w , λ) + Hbarier

f̂r (x , ŷr ;w , λ) = fr (x , ŷr ;w)+
∑

p∈P(r)

λ(x ,y),p→r (ŷr )−
∑

c∈C(r)

λ(x ,y),c→r (ŷc)

2. Move to dual task by λ (ln Z = maxp(x,y)
Ep(x,y)(ŷ)F (x , ŷ ;w) + H(p(x,y))):

min
w ,λ

∑
(x,y),r

ln
∑
ŷr

exp f̂r (x , ŷr ;w , λ)−
∑

(x,y)∈D

F (x , y ;w)
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Blending Learning Main Idea [Chen slides]

Standard learning:

repeat

repeat
update marginals br

until convergence

update parameters w

until convergence

Blended learning:

repeat

update marginals br

update parameters w

until convergence

Advantage:
More frequent parameter updates

Hazan, Schwing, McAllester, Urtasun: Blending Learning and Inference in Structured Prediction
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Blending Learning Update w , λ [Hazan at al. 2013]

D(λ,w) =
∑

(x ,y),r

ln
∑
ŷr

exp(fr (x , ŷr ;w) +
∑

c∈C(r)

λ(x ,y),c→r (ŷc)−

∑
p∈P(r)

λ(x ,y),r→p(ŷr ))−
∑
(x ,y)

F (x , y ;w)→ min
w ,λ

I Optimize by w (will be proof on the board if it’s necessary):

∂D

∂w
=

∑
(x,y),r ,ŷr

b(x,y),r ,ŷr

∂

∂w
fr (x , ŷr ;w) +

∑
(x,y)

∂

∂w
F (x , y ;w)

I Optimize by λ (will be proof on the board if it’s necessary):

µ(x,y),p→r (ŷr ) = ln
∑
ŷp\ŷr

exp (fp(x , ŷp ;w)−
∑

p′∈P(p)

λ(x,y),p→p′ (ŷp) +
∑

r′∈C(p)\r
λ(x,y),r′→p(ŷr′ ))

λ(x,y),r→p(ŷr ) ∝ cr ·(fr (x , ŷr ;w)−
∑

c∈C(r)

λ(x,y),c→r (ŷc )+
∑

p∈P(r)

µ(x,y),p→r (ŷr ))−µ(x,y),p→r (ŷr )
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Blending Learning Efficient Learning DSM (algo 2)

Efficient Deep Structured Learning (algo 2)

Repeat until stopping criteria:

1. Forward pass to compute the fr (yr , x ;w) ∀r , yr , (x , y) ∈ D

2. Compute the br (yr |x ,w) = exp(f̂r (x , yr ;w , λ)) ∀r , yr , (x , y) ∈ D, p ∈ P(r)

µ(x,y),p→r (ŷr ) = ln
∑

ŷp\ŷr

exp (fp(x, ŷp ; w)−
∑

p′∈P(p)

λ(x,y),p→p′ (ŷp) +
∑

r′∈C(p)\r

λ(x,y),r′→p(ŷr′ ))

λ(x,y),r→p(ŷr ) ∝ cr ·

fr (x, ŷr ; w)−
∑

c∈C(r)

λ(x,y),c→r (ŷc ) +
∑

p∈P(r)

µ(x,y),p→r (ŷr )

− µ(x,y),p→r (ŷr )

3. Backward pass via chain rule to obtain gradient

g =
∑

(x,y),r,ŷr

b(x,y),r (ŷr )∇w fr (ŷr , x ;w)−∇w

∑
(x,y),r

fr (x , y ;w)

4. Update parameters w
w = w − α · ∂/∂w
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Summary of Deep Structured Models [Raquel slides]

1. Modeling of correlations between variables

2. Non-linear dependence on parameters

3. Joint training of many convolution neural networks
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Evaluation Flicker Image Tagging

I Task: Find a combination of tags that describe the image, IYI = 238

I Graphical Model: Fully Connected 38

I First order potential: fi (x , yi ;U) = Alexnet(x ,U)

I Second order potential: fi ,j(x , yi , yj ;W ) = Wyiyj
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Evaluation Flicker Image Tagging

Learned class ”correlations”:
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Evaluation Word Prediction

I Task: Find five letters within distorted images, IYI = 265

I Graphical Model:

I First order potential:
1. One Layer : fi (x , yi ;U) = ReLu(UT

1 · x)
2. Two Layers: fi (x , yi ;U) = ReLu(UT

2 · ReLu(UT
1 · x))

I Second order potential:
1. Linear: fi,j(x , yi , yj ;W ) = Wyiyj
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Evaluation Word Prediction
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Evaluation Semantic Segmentation [Raquel slides]

I Task: Image segmentation
I Graphical Model: Fully connected CRF with Gaussian potentials
I NN: PreTrain OxfordNet , predicts 40 × 40 + upsampling
I Inference: using (algo1), with mean-field as approx. inference
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Evaluation Semantic Segmentation [Raquel slides]
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Evaluation Summary

1. Jointly learning helps

2. Non-linear pairwise function improves over the linear one

3. Deeper and more structured → better performance

4. Wide range of applications: Word recognition, Tagging, Segmentation
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